Leachate System Clogging - The Springfield Experience

Nathan Hamm
July 17, 2017
Presentation Overview

• Facility Background
• Challenges
• Technical Approach
• Findings
• Remedial Approach
• Design Recommendations
Facility Background

- **MSW Landfill**
 - 120 Acres Pre-Subtitle D
 - 22.2 Acres Subtitle D

- **Historically Trucked Leachate to WWTP**
 - Up to 15 MGY

- **Leachate Pumping System and Forcemain**
 - Constructed in 2010
 - Duplex Pump Station from Existing Storage Lagoon
 - 9 Mile, 4-Inch SDR 9 and SDR 17 HDPE Forcemain
 - Design Pump Flow 100 - 110 GPM (2.6 ft/sec)
 - >74M Gallons Pumped Since Commencement
Pump Station
Pumping System
Forcemain Construction
Challenges

• July 2016 Leachate System Stops Operating
 • Pumps Ramp Up and Shut Down (High Pressure Limits)

• City Attempts to Restore Service
 • Perform Pump Maintenance
 • Lagoon Intake Screen Dislodged
 • Turtles and Deer Bones
 • Attempts to Video / Camera Forcemain
 • Jetting Contractor Cleaned Select Section
 • Additional Clogs
Technical Approach

- Determine Extent of Problem
 - Forcemain Pressure Analysis
 - Camera / Video Select Forcemain Sections
- Assess Scale / Sludge Formation Mechanisms
 - Leachate Sampling and Analysis
 - Sludge Sampling and Analysis (Lagoons & Forcemain)
- Develop Remedial Alternatives/Recommendations
- Implement Selected Remedial Solutions
Findings - Forcemain Pressure Test

Forcemain Pressure Test Using Pump House Pumps

- Pump 'AR-2'
- Pump 'AR-4'
- Pump 'AR-5'
- Pump 'AR-6'
- Pump 'AR-8'
- Pump 'AR-10'

Pressure, PSI vs. Time, Minutes graph
Findings - Forcemain Camera
Findings - Leachate Analysis

• High TDS and Dissolved Metals
 • TDS 3,000 mg/L
 • Calcium, Iron, Magnesium, Sodium

• Moderate to High Organics Concentrations

• Scale Index Analysis and Precipitate Modeling
 • High Scaling Potential (Calcite-CaCO₃ and Siderite-FeCO₃)

![Chemical Oxygen Demand](chart1)

![Ammonia as N](chart2)
Leachate Lagoon Sludge
Pumping System Strainer Basket Sludge
Forcemain Sludge
Forcemain Sludge
Findings - Sludge Sampling and Analysis – EMSL Analytical

<table>
<thead>
<tr>
<th>Sample ID:</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Lagoon Sludge</td>
<td>Forcemain Sludge</td>
</tr>
<tr>
<td>Grouping</td>
<td>Analyte</td>
<td>Contribution</td>
</tr>
<tr>
<td>Liquid Phase:</td>
<td>Water</td>
<td>45 - 55%</td>
</tr>
<tr>
<td>Solid Phase:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Matter</td>
<td>1 - 3%</td>
<td>1 - 2%</td>
</tr>
<tr>
<td>Decomposed Organic Matter</td>
<td>1 - 3%</td>
<td>1 - 2%</td>
</tr>
<tr>
<td>Quartz</td>
<td>5 - 10%</td>
<td><1%</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>30 - 40%</td>
<td>5 - 10%</td>
</tr>
<tr>
<td>Mica</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Iron Oxide</td>
<td>2 - 5%</td>
<td>40 - 50%</td>
</tr>
<tr>
<td>Unidentified Inorganics</td>
<td>1 – 2%</td>
<td>10 - 20%</td>
</tr>
<tr>
<td>Biological Organisms:</td>
<td>Bacteria</td>
<td>Trace</td>
</tr>
</tbody>
</table>
Findings - Summary

• Sludge / Sediment Buildup Throughout Forcemain
 • Loose Sludge with “Chips” vs. Hard Cementation
 • Heaviest Buildup in Middle Sections
 • Observed Scaling on Pipe Walls in Section Closest to Pumps

• Significant Sludge Buildup in Lagoon (>18-Inches)
 • Sucked into Pumping System

• Sludge Chemical Composition Different Between Lagoon and Forcemain

• Leachate Conducive to Precipitate Scale Formation
Remedial Approach

• Modify Lagoon Intake Structure
• Phased Cleaning Approach
 • High Rate Flushing and Suction
 • High Pressure Jetting
 • Chemical Cleaning (Acid Treatment)
• Camera the Pipes After Cleaning to Observe Effectiveness
• Develop a Long-Term Routine Maintenance Program
 • Pigging
 • Lagoon Aeration
 • Routine Flushing or Jetting
 • Chemical Scale Inhibitors
 • Biocides
High Rate Flushing

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Valve Adjustment</th>
<th>Dist to End, Feet</th>
<th>Max Pressure, psi</th>
<th>Flow Rate, gpm</th>
<th>Gallons for one flush</th>
<th># of Flushes</th>
<th>Flush Time (min)</th>
<th>Gallons Required</th>
<th>Set Up Break Down, Hrs</th>
<th>RT Haul, mi</th>
<th>Load Rate</th>
<th>Cycle Time, Hrs</th>
<th>Pump Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-3 to AR-5</td>
<td>26+00</td>
<td>Open AR-5 North</td>
<td>8500</td>
<td>150</td>
<td>150</td>
<td>5548</td>
<td>1.5</td>
<td>55</td>
<td>8323</td>
<td>1.5</td>
<td>16</td>
<td>300</td>
<td>1.66</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close AR-5 South</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close AR-3 North</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open AR-7 South</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vac Truck at AR-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pump Truck at AR-3</td>
<td></td>
</tr>
<tr>
<td>AR-3 to AR-1 (accounting for 6" pipe)</td>
<td>26+00</td>
<td>Open AR-5 South</td>
<td>2234</td>
<td>150</td>
<td>150</td>
<td>2384</td>
<td>1.5</td>
<td>24</td>
<td>3575</td>
<td>1.5</td>
<td>16</td>
<td>300</td>
<td>0.83</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close AR-3 South</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close AR-3 North</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close AR-1 North</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vac Truck at AR-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pump Truck at AR-3</td>
<td></td>
</tr>
<tr>
<td>Pump House to AR-1</td>
<td>26+00</td>
<td>Open AR-3 South</td>
<td>2600</td>
<td>150</td>
<td>150</td>
<td>1697</td>
<td>1.5</td>
<td>17</td>
<td>2546</td>
<td>1.5</td>
<td>5</td>
<td>100</td>
<td>0.99</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Close AR-1 South</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open AR-1 North</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pump at AR-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vac Truck or Hose at PH</td>
<td></td>
</tr>
<tr>
<td>Pump House to Leachate Pond</td>
<td></td>
<td>Open AR-1 South</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>522</td>
<td>3</td>
<td>8</td>
<td>1547</td>
<td>1.5</td>
<td>5</td>
<td>100</td>
<td>0.99</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pump Truck at PH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Suction Line Valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pump to Leachate Pond</td>
<td></td>
</tr>
<tr>
<td>Monitor Pressure at injection point</td>
<td></td>
</tr>
<tr>
<td>Frac Tank Locations</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal
- **104 min**
- **16010 gal**
- **6 hr**
- **4 hr**
- **12 hr**

Totals
- **10 hr**
- **107911 gal**
- **19 hr**
- **24 hr**
- **53 hr**
Forcemain Pigging

Foam Swabs and Scouring Pigs
Forcemain Pigging

Remote Tracking System
Pigging - Launcher
Pigging – Catcher System
Pigging – Before and After Swabs
Pigging – Before & After
Lesson Learned – HDPE Restrictions
Chemical Treatment

• Acid Blends
• Large Volume Requirements
• Safety Concerns
• Disposal
• Cost
Overall Conclusions

• Analyze Leachate for Scaling Potential During Design

• Design Forcemain Systems for Sediment Resuspension
 • > 3.5 ft/sec for loose scale removal and resuspension
 • < 8 ft/sec to avoid excess head and water hammer

• Forcemain Pipe ≥ 4-inch Diameter to Facilitate Maintenance

• Design for Maintenance
 • Cleanouts Spaced 400-500 ft Maximum
 • Pig Launchers and Catchers
 • Chemical Treatment Equipment

• Develop and Follow a Routine Maintenance Plan
Questions

Nathan Hamm, P.E.
SCS Engineers, Inc.
7311 W. 130th Street, Suite 100
Overland Park, KS 66213
nhamm@scsengineers.com
(913) 749-0705 Direct Office Line