Missouri Waste Control Coalition Conference (2018):
Thinking Small: The Growing Presence of Engineered Nanoparticles in Wastewater
July 16, 2018

Presented by Connie Walden, Ph.D., E.I.
(913) 808-5004
OVERVIEW

Background
- Nanoparticle characteristics
- Types of nanoparticles

Nanoparticle Applications
- Examples of everyday use
- Benefits of nanomaterials
- How much is being released
- Environmental transport
- Impacts on activated sludge process; biofilms
- Occurrence in solid waste; leachate

Environmental Quantities

Wastewater interactions

Regulatory Compliance
- US FDA Guidance documents
- CERCLA, RCRA, TSCA, FIFRA, FFDCA
WHAT ARE NANOPARTICLES?

Engineered nanoparticles AKA ENPs:
Less than 100 nm
Well dispersed and stabilized with a shell material
High specific surface area -> increased reactivity
INCREASED REACTIVITY

SIZE EFFECTS

Aggregation
- Strongly bonded interactions
 - Irreversible

Agglomeration
- Weakly bonded interactions
 - Reversible

Interact with Surrounding Environment

Oxidation
Adsorption of Compounds
Dissolution
Redox
ROS Generation (free radicals)

GREDELL Engineering Resources, Inc.
Aggregation/Agglomeration are controlled through:

- **Structural Characteristics**
 - Surface Functionalization
 - Major factor in flocculation and removal efficiency

- **Surrounding Environment**
 - Presence of Organics
 - Reduces coagulation by adsorption to ENP surface

Images courtesy of google images
TYPES OF NANOPARTICLES
Metal Oxides

Titanium Dioxide
Examples with ~1 ug Ti/mg Food
- Mentos Freshmint Gum
- Hostess Powdered Donuts
- Kool Aid Blue Raspberry
- M&M’s Chocolate Candy
- Betty Crocker Whipped Cream Frosting

Zinc Oxide
TYPES OF NANOPARTICLES
Metals

Gold

Au-NP Applications
Chemotherapy (Drug Delivery)
Biosensors
Gene Delivery

Silver
Where are Engineered nanoparticles?

Applications include:
Dispersion in gels
Attachment to surfaces
Embedded in polymers
Applied in industrial processing

Toiletries (deodorant, toothpaste, face washes/creams)

Drug delivery, antibacterial, medical supplies

Carpets, toys, clothing (self cleaning or antibacterial surface coatings)

Images courtesy of google images
ENVIRONMENTAL QUANTITIES

<table>
<thead>
<tr>
<th>Industry</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textile industry</td>
<td>2.6-6.3 Megagrams in one year</td>
<td>(silver nanoparticles)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 Mg ~ 1.1 U.S. Tons)</td>
</tr>
<tr>
<td>Sunscreen industry</td>
<td>14.3 – 143 Mg in 2008</td>
<td>(titanium nanoparticles, GLOBALLY)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 Mg ~ 1.1 U.S. Tons)</td>
</tr>
</tbody>
</table>

Titanium Dioxide (TiO2)

- **34,000 Megagrams production total** in one year (75 million pounds) **U.S. ONLY**
- **19,000 Mg released** TCE reported (1994) (42 million pounds)
ENVIRONMENTAL CONCERNS

Bioaccumulation of Silver through ingestion of algae in *Daphnia magna* (zooplankton)

Clean Water Act – Acute Toxicity

Silver ion toxicity *Thalassiosira weissflogii* (marine diatom)

Decreased leaf litter decomposition rates by freshwater bacterial communities

Pradhan et al. 2011
Burchardt et al. 2012
ENVIRONMENTAL CONCERNS

Toxicity and bioaccumulation of nano-TiO₂

Chronic doses as low as 5 mg/kg in mice show liver damage, impairment of spatial recognition, accumulation in intestines

Negative toxicological effects to macroinvertebrate community structure under chronic exposure to 25 mg/kg

Jovanović, B. 2015
TRANSPORT OF NANOPARTICLES

Nanowaste
 - POTWs
 - Soil
 - Landfills
 - Water
 - Leachate
FATE & TRANSPORT IN TREATMENT WORKS

Collection System
- Potential for chemical speciation; sorption to suspended solids or biofilm

Primary Treatment
- Potential removal through sorption, aggregation

Aeration Basin (Activated Sludge)
- Microbial uptake; entrapment; complexation with organic matter

Secondary Clarifier
- Sedimentation by adsorption to floc

Biosolids Processing
- Chemical speciation and complexation with organics; potential for dissolution after land application

Attached Growth Reactor
- EPS encapsulation; retention and release; microbial uptake; complexation with organic matter

Secondary Clarifier
- Sedimentation by adsorption to detached biofilm

Disinfection
- Increased oxidation and toxicity

Effluent to nearest waterway
- Release of Me(O)NPs through dissolution, unsettled suspensions

Image: Walden and Zhang, 2016
REMOVAL AND CHALLENGES IN TREATMENT WORKS

Biological Treatment
- Activated Sludge: 90-99% removal
- Attached growth (Biofilm): few studies, 10%

Source Control
- Commercially uncontrolled
- Enters water system through abrasion, disposal, and/or application

Toxicity
- Silver is more toxic when dissolved
- Ciliates, methanogens, *Nitrosomonas europaea* activity, intact RBC biofilm

Images courtesy of google images
Metal Pollutants included in Part 503 Biosolids Rule

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Ceiling concentration (milligrams per kilogram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>75</td>
</tr>
<tr>
<td>Cadmium</td>
<td>85</td>
</tr>
<tr>
<td>Copper</td>
<td>4300</td>
</tr>
<tr>
<td>Lead</td>
<td>840</td>
</tr>
<tr>
<td>Mercury</td>
<td>57</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>75</td>
</tr>
<tr>
<td>Nickel</td>
<td>420</td>
</tr>
<tr>
<td>Selenium</td>
<td>100</td>
</tr>
<tr>
<td>Zinc</td>
<td>7500</td>
</tr>
</tbody>
</table>

The estimated concentrations in sludge-treated soils:

- nano-TiO₂ ~ 42 μg/kg/year
- Ag-NPs ~ 662 ng/kg/year

Concerns:

- Eco-toxicological risks
- Soil Runoff
- Uptake by plants -> bioaccumulation
INDIRECT POTABLE REUSE

Orange County, CA
• Treated wastewater replenishes groundwater

Groundwater Treatment
• Advanced Treatment: Ultrafiltration; Reverse Osmosis

Worst Case
• 0.04 ppb Ag-NPs
• 147 ppb TiO$_2$
• 0.28 ppb ZnO

Berlin, Germany
• Treated wastewater replenishes groundwater

Groundwater Treatment
• No Advanced Treatment

Worst Case
• 3.3 ppb Ag-NPs
• 13 ppb TiO$_2$
• 0.25 nano-ZnO

Kirkegaard et al. 2015
‘NANO-WASTE’ REGULATIONS

US Regulations
- TSCA
- FDA (guidance docs)
- FIFRA

European Union
- REACH

GREDELL Engineering Resources, Inc.
‘NANO-WASTE’ REGULATIONS

TSCA (40 CFR 704.20; 2017) applies to:

- Chemical Manufacturing or Processing (NAICS codes 325).
- Synthetic Dye and Pigment Manufacturing (NAICS code 325130).
- Other Basic Inorganic Chemical Manufacturing (NAICS code 325180).
- Rolled Steel Shape Manufacturing (NAICS code 331221).
- Semiconductor and Related Device Manufacturing (NAICS code 334413).
- Carbon and Graphite Product Manufacturing (NAICS code 335991).
- Home Furnishing Merchant Wholesalers (NAICS code 423220).
- Roofing, Sliding, and Insulation Material Merchant Wholesalers (NAICS code 423330).
- Metal Service Centers and Other Metal Merchant Wholesalers (NAICS code 423510).
‘NANO-WASTE’ REGULATIONS

FIFRA (section 3g) applies to:

- the registration, distribution, sale, and use of pesticides in the United States.

Nanosilver pesticides
Examples: AGS-20 and NSPW

Products such as trash cans, cell phones, computers, furniture, watch bands, uniforms, sportswear, or office supplies that have labels claiming that the products are “antimicrobial” or “antibacterial”

GREDELL Engineering Resources, Inc.
‘NANO-WASTE’ REGULATIONS

Other site specific applications:

- CERCLA, RCRA
- FFDCA
- CWA CAA
- National Nanotechnology Initiative
- Consumer Product Safety Commission

GREDELL Engineering Resources, Inc.
GREDELL Engineering Resources, Inc.

ENVIRONMENTAL ENGINEERING LAND - AIR - WATER

Offices in Jefferson City, Kansas City Metro and Springfield, Missouri

When experience counts, count on us!

QUESTIONS?

COMMENTS?

Presented by Connie Walden, Ph.D., E.I.
(479) 903-6405 or (913) 808-5004