

ADSORBENT MEDIA COMPARISON FOR THE REMOVAL OF PFAS FROM WATER AND WASTEWATER TREATMENT SYSTEMS

Marat Goldenberg, PE CETCO - Mineral Technologies Inc.

Missouri Waste Coalition Conference 2023

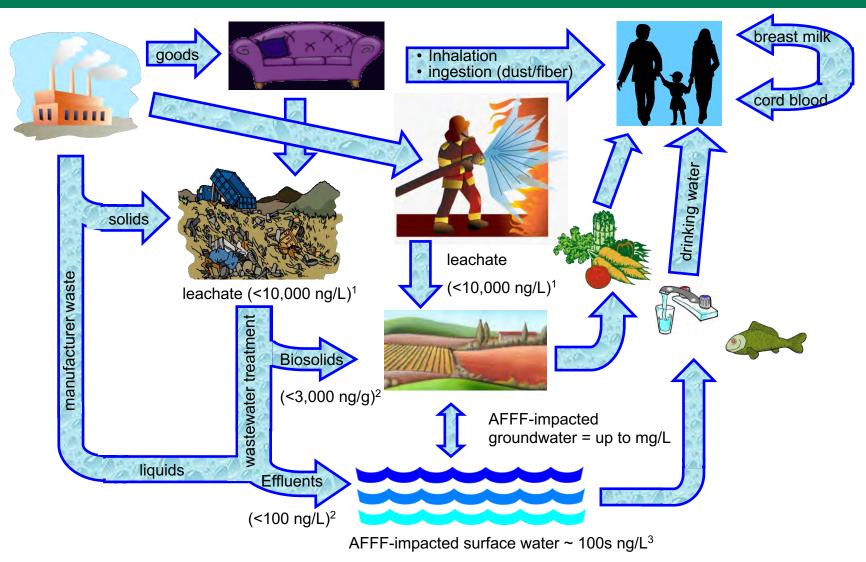
Copyright[©] 2023 CETCO

CETCO is a wholly owned subsidiary of MINERALS TECHNOLOGIES INC., a resource- and technology-based company that develops, produces and markets worldwide a broad range of specialty mineral, mineral-based and synthetic mineral products and related systems and services.

2022 SALES	PUBLICALY TRADED	COUNTRIES	PRODUCTION LOCATIONS	R&D CENTERS	EMPLOYEES
\$2.13 BILLION	NYSE: MTX	35	158	12	>4,000

Performance Materials

- Leading global supplier of tailored bentonite-based solutions serving a broad range of customers in consumer and industrial markets.
- Examples: metalcasting, household & personal care, basic minerals, environmental products (CETCO), building materials (CETCO), and off-shore water filtration (CETCO).

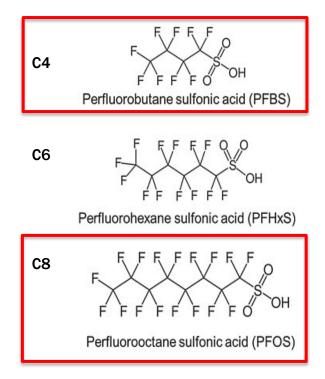


AGENDA

- PFAS Background Information
- Design considerations for PFAS treatment systems
- Introduction to Surface-Modified Clay (FLUORO-SORB[®] Adsorbent)
- Initial University Research Showing PFAS Adsorption Performance
- Pilot column and RSSCT Results
- Site Estimate and Startup Information

PFAS EXPOSURE PATH

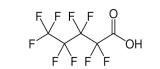
Adapted from Oliaei 2013, Environ Pollut Res


¹Allred et al., 2014. J Chrom; ² Schultz et al., 2006. Environ Sci Technol; Higgins, 2005. Environ Sci Technol; ³Ahrens et al., 2015. Chemosphere

PFAS - Perfluoroalkyl & Polyfluoroalkyl Substances

- Thousands of PFAS were synthesized and manufactured for variety of uses
- Evolving recognition of which specific PFAS are contaminants of concern

Perfluorosulfonic acids


Perfluorocarboxylic acids

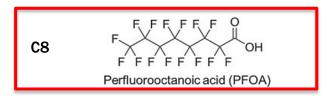
C4

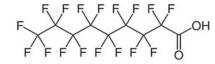
C5

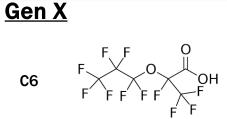
C6

F F F F Perfluorobutanoic acid (PFBA)

Perfluoropentanoic acid (PFPeA)




Perfluorohexanoic acid (PFHxA)


C9

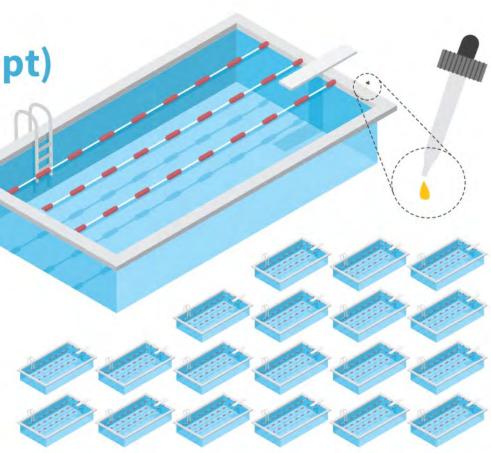
F F F F F O F F F F F F Perfluoroheptanoic acid (PFHpA)

Perfluorononancanoic acid (PFNA)

Hexafluoropropylene oxide dimer acid (HFPO-DA)

EPA PROPOSED NATIONAL PRIMARY DRINKING WATER REGULATION (NPDWR)

Compound	Proposed MCLG	Proposed MCL (enforceable levels)
PFOA	Zero	4.0 parts per trillion (also expressed as ng/L)
PFOS	Zero	4.0 ppt
PFNA		
PFHxS	1.0 (unitless)	1.0 (unitless)
PFBS	Hazard Index	Hazard Index
HFPO-DA (commonly referred to as GenX Chemicals)		


MCGL = non-enforceable, maximum contaminant level goals

MCL = legally enforceable, maximum contaminant levels

1 part per trillion (ppt)

IS EQUIVALENT TO A SINGLE DROP OF WATER IN

20 olympic-sized swimming pools

Source: https://www.michigan.gov/documents/pfasresponse

CURRENT TREATMENT OPTIONS

FLUORO-SORB® 200

Granular Activated Carbon (GAC)

FLUORO-SORB® Adsorbent FLUORO-SORB® 100

FLUORO-SORB® 400

Ion Exchange Resin (IER/IX)

Chemical/Physical Treatment

Reverse Osmosis

FLUORO-SORB® ADSORBENT FOR PFAS TREATMENT

- Proprietary clay-based adsorbent media for the removal of PFAS from water or wastewater
- Commercially available since May 2019
 - Manufactured in ISO9001:2015 certified production plant in Aberdeen, Mississippi
 - Meets NSF/ANSI 61 Certification
- Partnerships with multiple universities for testing and engineering firms field piloting

VERSATILITY IN DEPLOYMENT

FLUORO-SORB® 100

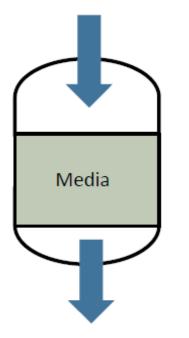
FLUORO-SORB[®] 200

FLUORO-SORB® 400

Soil Stabilization and Solidification

Water/WasteWater Filtration Dissolved Air Flotation

Sediment Capping - REACTIVE CORE MAT[®] (RCM)



Key Design Considerations

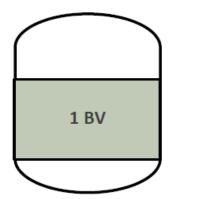
- Type of PFAS compounds present
- Media Selection
- HLR + Empty Bed Contact Time (EBCT)
- Available Space
- Lifecycle Costs
- Residuals Management

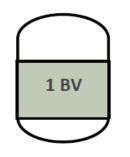
PFAS – EMPTY BED CONTACT TIME (EBCT)

Amount of Time that the water with the contaminant is in Contact with the media bed

EBCT = (Bed volume, ft³ of Media) x (7.48 gallons/ ft³) Flow Rate (gpm)

- GAC EBCT = ~10 Minutes per vessel (typical design)
- IX/FS EBCT = ~3 Minutes per vessel (typical design)

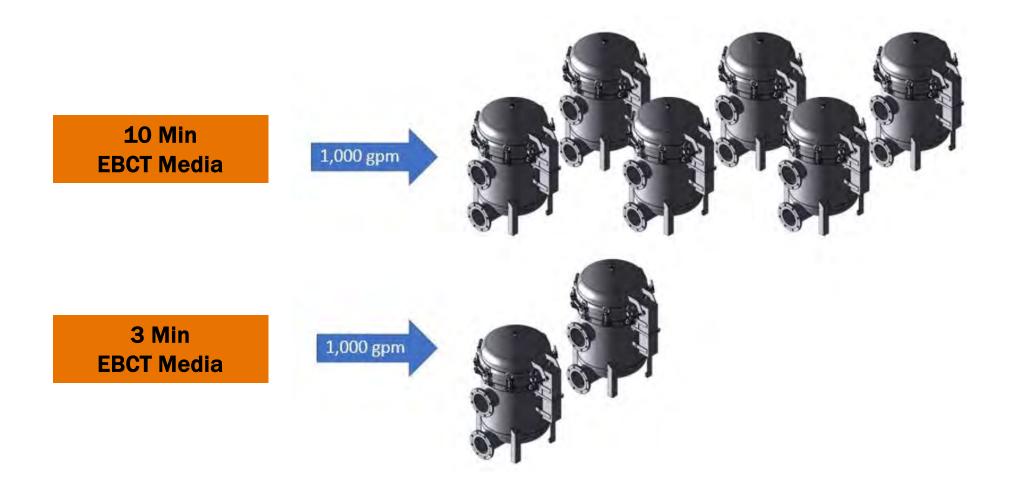



PFAS – UNDERSTANDING BED VOLUMES

Bed Volume = Volume of a Media Bed

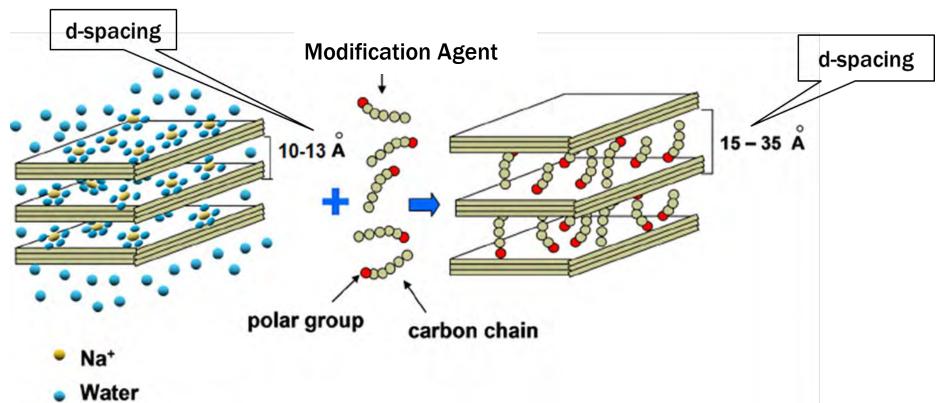
1 BV = EBCT x Flow Rate (gpm) 7.48 gallons/ ft³

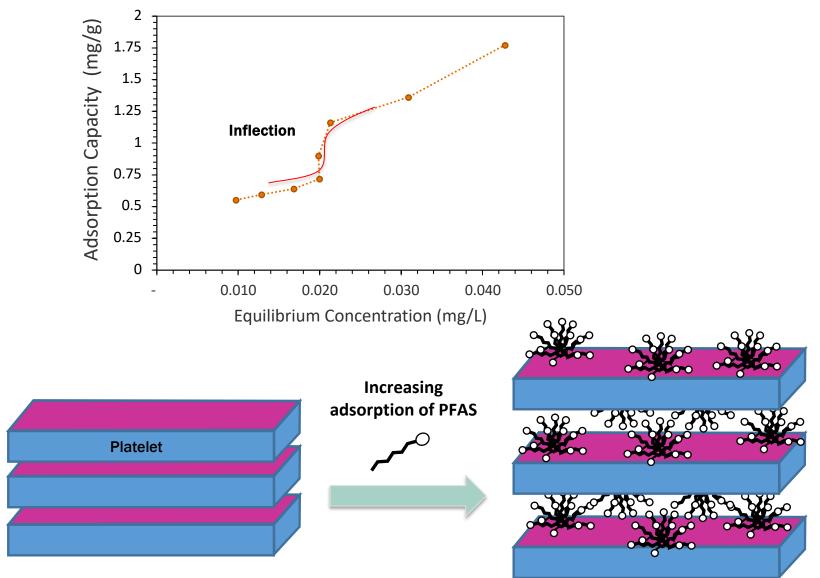
FLOW	EBCT	BV, VOLUME OF MEDIA NEEDED TO ACHIEVE EBCT
1,000 gpm	10 min	1,337 cubic feet
1,000 gpm	3 min	401 cubic feet


Thus, 1 BV (quantity) of GAC with 10 min EBCT ≠ 1 BV (quantity) of FS with 3 min EBCT

1 BV w/ 10 min EBCT = More media volume

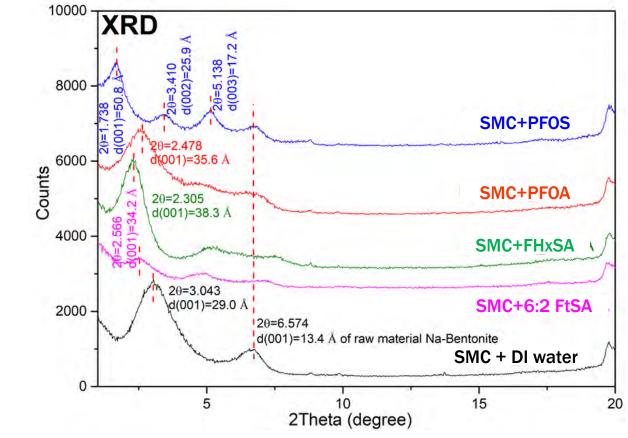
1 BV w/ 3 min EBCT = Less media


HOW DOES EBCT RELATE TO FOOTPRINT?


WHAT IS FLUOROSORB?

- Surface-modified clay adsorbents are obtained by converting a sodium bentonite clay to an adsorption media using a modification agent that has high affinity for a variety of PFAS
- The intralayer space or d-spacing increases as the modification agent bonds with the clay.
- PFAS are removed from water or stabilized in soil by adsorption it is more energetically favorable for PFAS to partition into the adsorbent than remain in the water or soil.

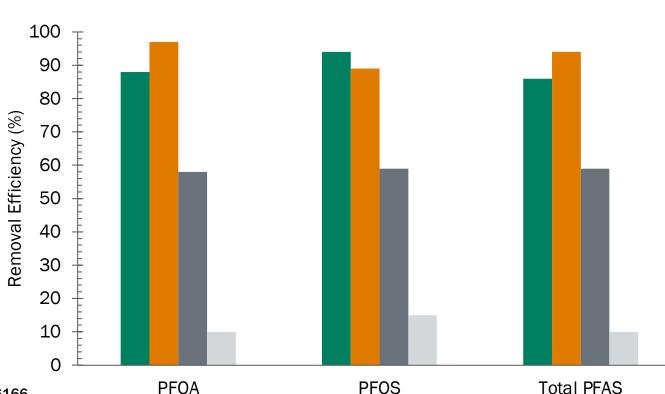
FLUORO-SORB® ADSORBENT PFAS REMOVAL MECHANISM



PFAS ADSORPTION BEHAVIOR

XRD shows the d-spacing increases as PFAS are adsorbed SMC = Surface-Modified Clay

substance	d- spacing
SMC+DI water	29.0 Å
SMC+PFOS	50.8 Å
SMC+PFOA	35.6 Å
SMC+FHxSA	38.3 Å
SMC+6:2 FtSA	34.2 Å

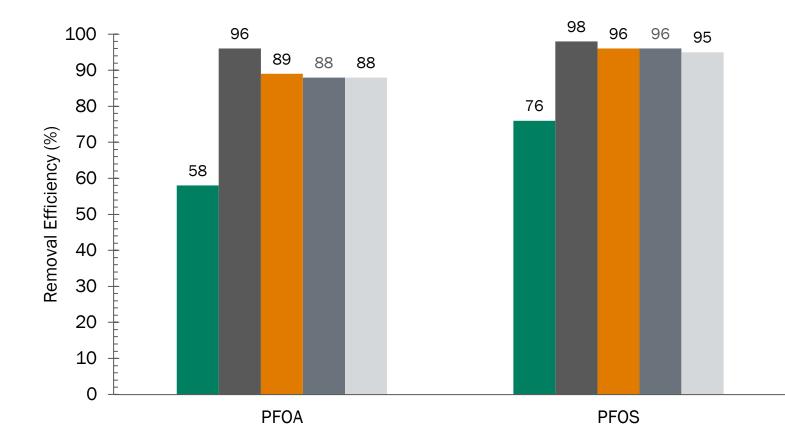


Yan, B., Wang, J., Liu, J. (2021) <u>Water Research</u>, 201, 117371.

COMPARATIVE ASSESSMENT

- PFAS contaminated groundwater from a firefighting area at a former airfield
- Batch adsorption experiments 40 mg FLUORO-SORB[®] adsorbent was mixed with 400 ml of contaminated groundwater for 168 hours and the supernatant analyzed for PFAS concentration

■ FLUORO-SORB 200 ■ Ion Exchange Resin ■ Granular Activated Carbon ■ Biochar


18

IMPACT OF CO-CONTAMINANTS

• FLUORO-SORB[®] adsorbent can effectively treat mixed waste streams and is proven to not be negatively impacted by co-contaminants

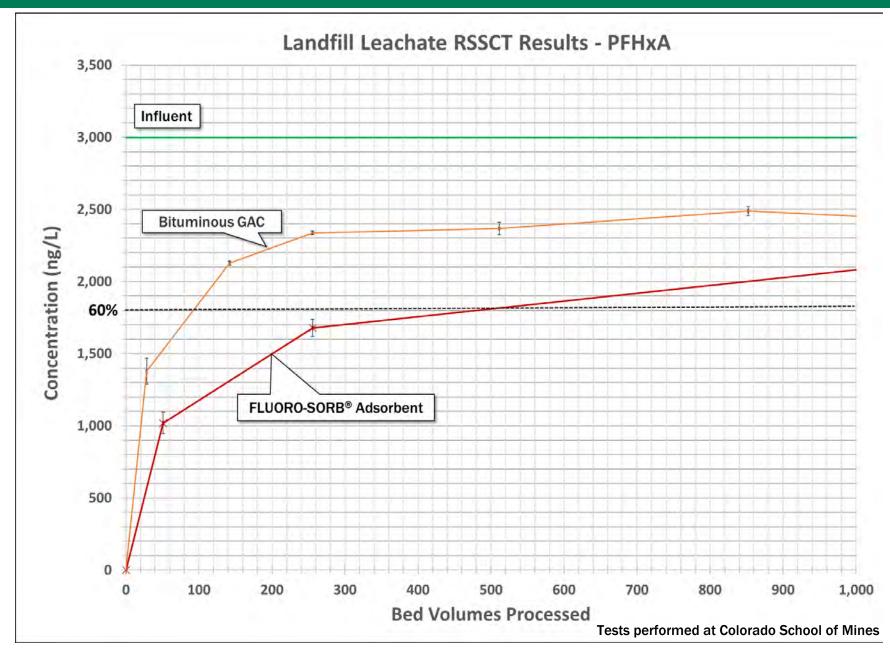
■ NOM 100.0 mg/L ■ Diesel 100.0 mg/L ■ 1,4 Dioxane 1.0 mg/L ■ BTEX 1.0 mg/L ■ TCE 1.0 mg/L

RSSCTS WITH FLUORO-SORB® ADSORBENT TREATMENT OF PFAS IN LANDFILL LEACHATE

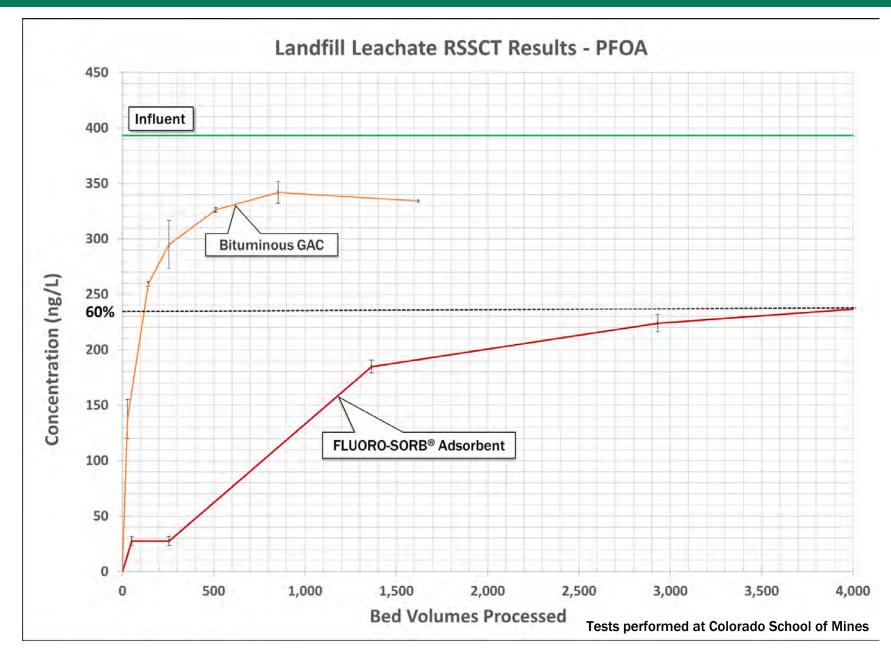
Constant Diffusivity Scaling

Parameter	Vessel	RSSCT	
Average particle diameter (mm)	0.630	0.107	
Bed height (in)	82	0.98	
Column diameter (in)	120	0.37	
Bed volume	4,000 gal	1.7 mL	
Water flow	400 gpm	5.82 ml/min	
Filtration rate (gpm/ft^2)	5	2.13	
EBCT (min)	10.0	0.29	

- Duplicate columns for each media
- Stainless steel column "housing"
- Fed upflow by peristaltic pump



LANDFILL LEACHATE WATER PARAMETERS


Parameter	Value		
рН	6.5		
Conductivity (µS/cm)	76,600		
TOC (mg/L)	560		
Ca (mg/L)	6420		
Fe (mg/L)	32.6		
Mg (mg/L)	436		
Mn (mg/L)	5.9		
NO ₃ -(mg/L)	0.4		
SO ₄ ²⁻ (mg/L)	64		

Tests performed at Colorado School of Mines, Golden, CO

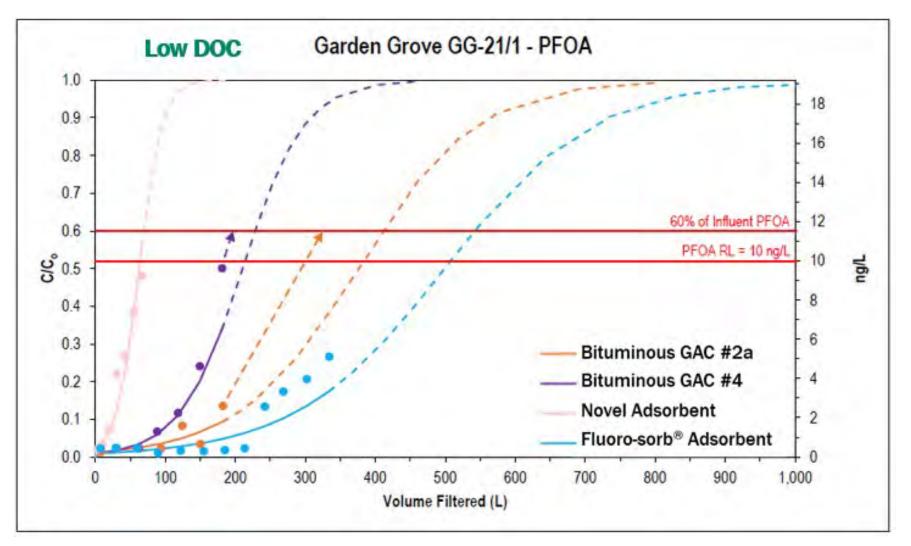
ORANGE COUNTY WATER DISTRICT (OCWD) PFAS TESTING PROGRAM

GAC, IX, NOVEL ADSORBENTS

- <u>Objective</u>: Identify adsorbents that are best suited to remove PFAS from Orange County groundwater that is to be used as drinking water
- Performed Rapid Small Scale Column Tests (RSSCTs) in the laboratory using well water from across Orange County
- Pilot testing adjacent to OCWD well in Anaheim, CA (Bessie Well)
- **PFAS** in Bessie Well:
 - 14 23 ng/L PFOA
 - 19 27 ng/L PFOS

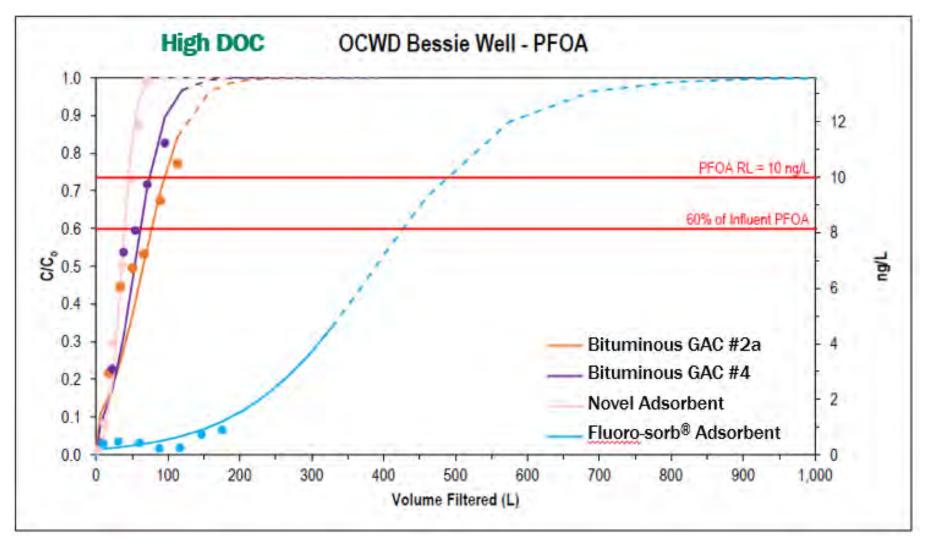
References:

Orange County Water District, Jacobs (2021). PFAS Treatment Testing Study Final Report. June 2, 2021. Orange County Water District (2021). PFAS Phase 1 Pilot Scale Treatment Study Final Report. March 24, 2021.



WATER QUALITY SUMMARY BESSIE WELL

Parameter Name ^a	Abbrv.	Unit	Median	Range	Date range
Total Alkalinity (as CaCO₃)	TotAlk	mg/L	210	189 - 217	2001-2019
рН	pН	-	7.6	7.3 - 8.2	2001-2019
Chloride	CI	mg/L	128.0	89.6 - 146	2001-2019
Nitrate Nitrogen	NO3-N	mg/L	1.74	ND - 4.62	2001-2019
Perchlorate	CIO4	ug/L	ND	ND	2001-2019
Sulfate	SO4	mg/L	126	114 - 149	2001-2019
Total Dissolved Solids	TDS	mg/L	600	518 - 662	2001-2019
Total Organic Carbon (unfiltered)	тос	mg/L	1.50	1.28 – 1.99	2001-2019
Perfluoro octanoic acid	PFOA	ng/L	16.9	14.4 – 23.4	2016-2019
Perfluoro octane sulfonic acid	PFOS	ng/L	25.4	19.0 - 27.2	2016-2019
Perfluoro butane sulfonic acid	PFBS	ng/L	17.3	12.4 – 19.0	2016-2019
Perfluoro hexane sulfonic acid	PFHxS	ng/L	9.9	7.9 – 11.6	2016-2019
Perfluoro nonanoic acid	PFNA	ng/L	2.1	ND - 4.22	2016-2019
Other PFAS compounds	_ b	ng/L	ND	ND	2016-2019

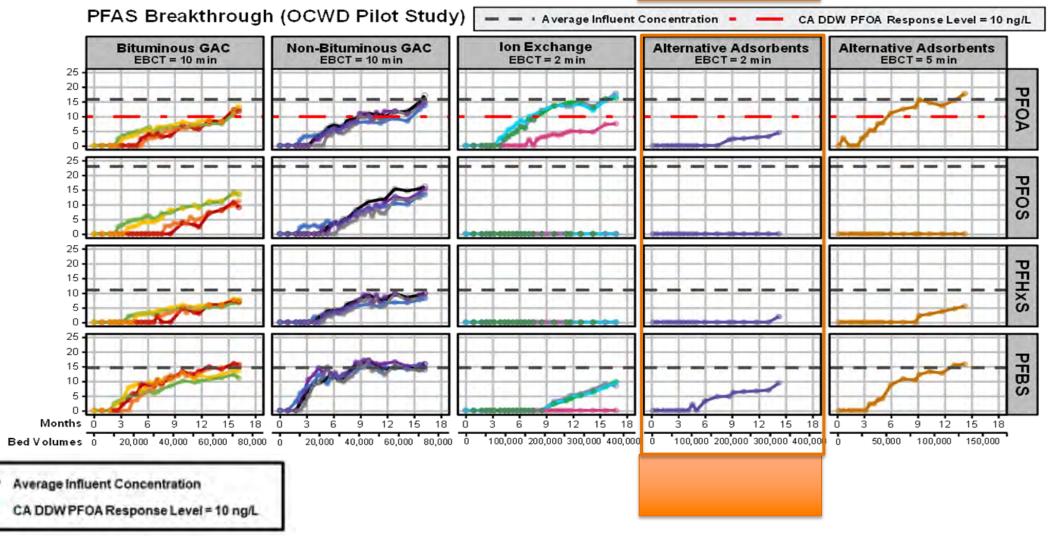

RSSCT RESULTS FOR GARDEN GROVE WELL

Orange County Water District, Jacobs (2021). PFAS Treatment Testing Study Final Report. June 2, 2021,

RSSCT RESULTS FOR OCWD BESSIE WELL

Orange County Water District, Jacobs (2021). PFAS Treatment Testing Study Final Report. June 2, 2021,

OCWD PILOT TEST SYSTEM BESSIE WELL


- 8 GAC: 10-minute EBCT
- 4 IX: 2-minute EBCT
- 2 Novel Adsorbents
 - Other5-minute EBCT
 - CETCO FLUORO-SORB[®] adsorbent: 2-minute EBCT

PILOT RESULTS JULY 2021

FLUORO-SORB® ADSORBENT

Orange County Water District (2021). PFAS Phase 1 Pilot Scale Treatment Study Final Report. March 24, 2021

WE PROVIDE:

- Free product samples
- Technical support for testing program and data review
- Bed life estimates

Contact us at:

<u>marat@vadoseRT.com</u> or cetco@mineralstech.com

CONCLUSIONS

FLUORO-SORB[®] ADSORBENT IS AN ECONOMICAL AND EFFECTIVE TREATMENT MEDIA FOR PFAS

- Significantly more adsorptive than GAC with an EBCT as low as 2 minutes
- Binds entire spectrum of PFAS without being impacted by mixed waste streams
- Commercially available today without need for additional capital investment
- NSF-certified for drinking water treatment

OUR STANDARDS. YOUR PEACE OF MIND.

cetco@mineralstech.com | cetco.com

The MTI Logo[®], Fluoro-sorb[®], Reactive Core Mat[®], and CETCO[®] are registered trademarks of Minerals Technologies Inc. or its subsidiaries