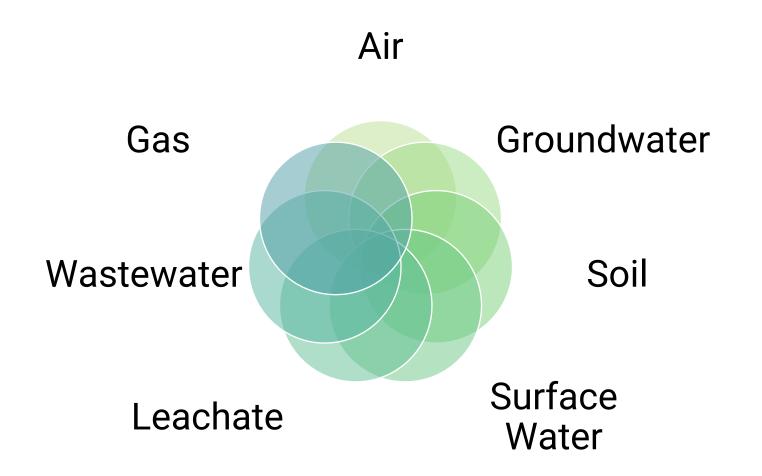


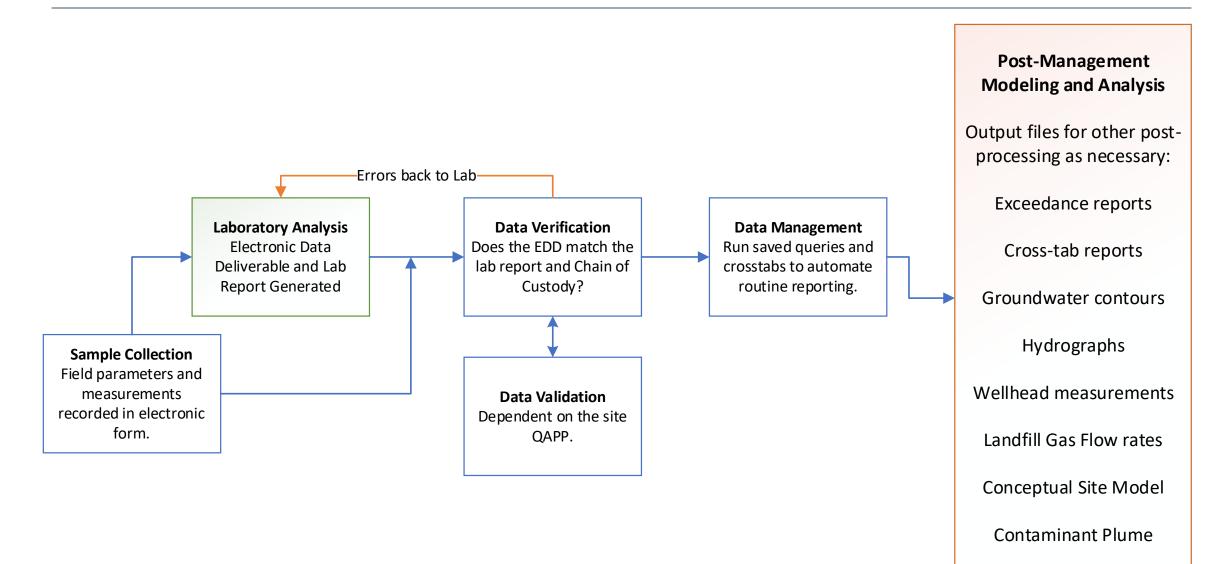
Mining Bitcoin from Your Groundwater Database

A presentation to: Missouri Waste Control Coalition 2023 Environmental Conference



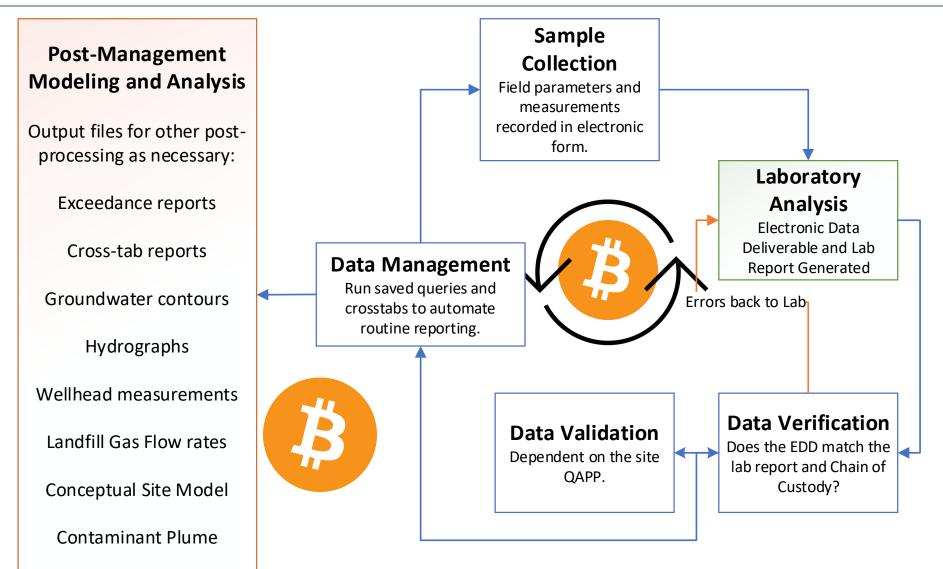
What is Bitcoin Mining?

Environmental Domains are connected



Our database must be able to evaluate the interface of the domains.

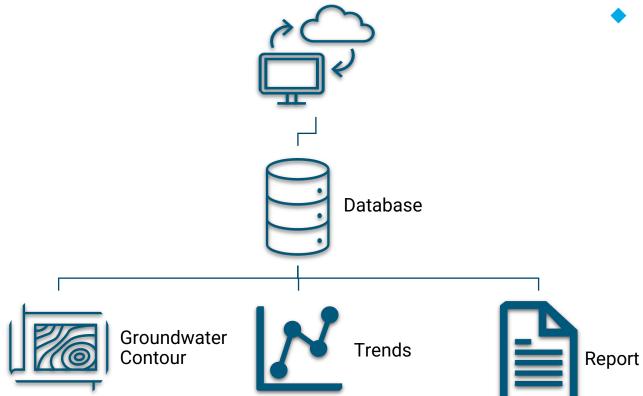
Foth


| Page 3

Overview of a Typical Data Management Workflow

Page 4 Foth

Data Management, like Bitcoin Mining, is a Circular Process

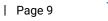


Case Studies

★ Foth

Automating Data Reporting

- Creating saved query and cross tab structures you can easily run reports with a click of a button.
 - Run Water Level Elevations
 - Run a table with only field parameters
 - Create an exceedance report against the intervention limit or other action level.



GW Monitoring Network Optimization: Sufficiency vs Redundancy

- Sufficiency and Redundancy evaluations can include:
 - Statistical evaluation (e.g., detect count),
 - Temporal evaluation (e.g., detections with time), and
 - Spatial evaluation (e.g., detections in space).



Case Study - Redundancy

*****Foth

GW Monitoring Network Review - Redundancy

1. Statistics Screening

Foth

| Page 10

- 2. Temporal
- 3. Spatial

Initial Statistics Screening

 Any low hanging fruit?

 e.g., no exceedances and <10% detection?

	MW-3	3-89	MW-4A-89		MW-5-89		MW-6-89		MW-103A-12	
Analyte	Frequency	% Detects	Frequency	% Detects	Frequency	% Detects	Frequency	% Detects	Frequency	% Detects
Appendix Metals										
Arsenic	Annual	56%	Annual	100%	Annual	100%	Annual	56%	Annual	89%
Barium	Annual	100%	Annual	100%	Annual	100%	Annual	100%	Annual	100%
Beryllium	Annual	19%	Annual	15%	Annual	7%	Annual	7%	Annual	11%
Chromium	Biennial	19%	Biennial	19%	Biennial	4%	Biennial	7%	Annual	17%
Cobalt	Annual	67%	Annual	70%	Annual	67%	Annual	70%	Biennial	100%
Copper	Biennial	41%	Biennial	26%	Biennial	19%	Biennial	26%	Annual	50%
Lead	Biennial	26%	Annual	26%	Biennial	33%	Biennial	7%	Annual	33%
Nickel	Annual	74%	Annual	67%	Annual	0/%	Biennial	0/%	Biennial	100%
Selenium	Biennial	7%	Biennial	26%	Biennial	7%	Annual	11%	Biennial	11%
Vanadium	Annual	40%	Biennial	44%	Biennial	11%	Annual	56%	Annual	56%
Zinc	Biennial	41%	Biennial	22%	Biennial	22%	Biennial	26%	Annual	28%
Appendix I VOCs						0				
1,1-Dichloroethane	Annual	22%	Biennial	1.5%	No Detects	0%	Annual	37%	No Detects	0%
1,2-Dichloropropane	Annual	4%	No Detects	0%	No Detects	0%	Biennial	30%	No Detects	0%
1,4-Dichlorobenzene	Annual	7%	Biennial	22%	No Detects	0%	Annual	11%	No Detects	0%
2-Butanone	Annual	4%	Biennial	7%	Annual	7%	No Detects	0%	Annual	11%
Acetone	Biennial	4%	Annual	19%	Biennial	4%	Biennial	11%	Annual	11%
Benzene	Biennial	7%	Annual	30%	No Detects	0%	Annual	20%	Annual	44%
Chlorobenzene	Annual	15%	Annual	19%	No Detects	0%	Annual	33%	No Detects	0%
Chloroethane	Biennial	7%	Annual	15%	Annual	4%	Annual	15%	No Detects	0%
cis-1,2-Dichloroethene	Biennial	3376	Biennial	7%	No Detects	0%	Annual	37%	Annual	orec

Foth

| Page 11

Temporal Evaluation

Is a change in sample frequency supported by the Rate of Change of detections (i.e., the slope of fitted linear regression line)?

Mann- Kendall Statistic	II (probability of Coefficient of		Trend Conclusion
S>0	< 0.05	Not Restricted	(Increasing)
S>0	0.05 - 0.10	Not Restricted	PI (Probably Increasing)
S>0	>0.10	Not Restricted	NT (No Trend)
S≤0	> 0.10	≥1	NT (No Trend)
S≤0	> 0.10	<1	S (Stable)
S < 0	0.05 - 0.10	Not Restricted	PD (Probably Decreasing)
S<0 < 0.05		Not Restricted	D (Decreasing)

Table 2 Modified CES Mann-Kendall Decision Criteria

Rate of Change (Linear Regression) High MH Medium LM Low I (Increasing) Mann-Kendall Trend PI (Probably Increasing) NT (No Trend) S (Stable) PD (Probably Decreasing) D (Decreasing) Quarterly Sampling Semiannual Sampling Annual Sampling Note: Adapted from Figure 5.1 of AFCEE (2012)

Table 3

Summary of Optimal Sampling Frequency Flowchart

GW Monitoring Network Review: Sufficiency vs Redundancy

 The following equation can be used for spatial evaluation of sufficiency and redundancy.

 $RPD = \frac{|Observed Concentration_i - Interpolated Concentration_i|}{Maximum[(Observed Concentration_i + Interpolated Concentration_i)/2, MCL]} \times 100\%$

- Insufficient locations give a high Relative Percent Difference (RPD).
- Redundant locations give a low Relative Percent Difference (RPD).

Spatial Evaluation

- What is the potential change in interpretation resulting from removing a well?
- Percent change between the known vs. interpolated concentration
- Percent change in area of the plume exceeding the GWPS
- Percent change in volume of the plume exceeding the GWPS
- If percent change less than 15%, then it is acceptable to remove well.

Aquifer	Well	Arsenic	Cobalt	Thallium
Upper Bedrock	MW-102A	Х	x	X
Upper Bedrock	MW-103A	X	X	Х
Upper Bedrock	MW-105A	X		Х
Upper Bedrock	MW-106A			Х
Upper Bedrock	MW-107A	X		· · · · · · · ·
Upper Bedrock	MW-108A	Х	X	Х
Upper Bedrock	MW-109A			
Deeper Bedrock	MW-102B	X	х	
Deeper Bedrock	MW-103C	X	X	X
Deeper Bedrock	MW-104B			
Deeper Bedrock	MW-105B			
Deeper Bedrock	MW-107B		1	11.10.00
Deeper Bedrock	MW-108B			Х
Deeper Bedrock	MW-109B			
Deeper Bedrock	MW-11			
Deeper Bedrock	MW-15		X	X
Deeper Bedrock	MW-18	(a	1	Х
Deeper Bedrock	MW-19	Х	Х	
Deeper Bedrock	MW-25	1 2 7 2	X	Х
Deeper Bedrock	MW-27	X	х	X
Deeper Bedrock	MW-29	X	X	Х
Deeper Bedrock	MW-31		x	X

d for Cratical Ontimization and Ontimization

X = Well contributes only a lesser amount of information in delineating groundwater concentrations.

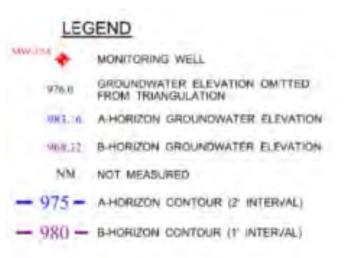
- Summarize existing monitoring vs proposed monitoring for;
- number of parameters per well (stats)
- frequency of monitoring per well (temporal)
- omit or abandon monitoring per well (spatial)

Monitoring Well	Current Monitoring Program	Current Schedule (!)	Recommended Optimize Schedule ⁽¹⁾		
MW-1-89	Assessment	Semiannual Appendix II	Annual Appendix II		
MW-3-89	Detection	Semiannual Appendix I	Annual Appendix I		
MW-4A-89	Detection	Semiannual Appendix I	Annual Appendix I		
MW-4B-89	Assessment	Semiannual Appendix II	Annual Appendix II		
MW-5-89	Detection	Semiannual Appendix I	Annual Appendix I		
MW-6-89	Detection	Semiannual Appendix I	Annual Appendix I		
MW-11	Delineation	Semiannual Appendix I VOCs, Arsenic, Cobalt	Annual Appendix I VOCs, Arsenic, Cobalt		
MW-101B	Delineation	Semiannual Appendix I VOCs	Annual Appendix I VOCs		
MW-102A-12	Assessment	Semiannual Appendix II	Annual Appendix II (2)		
MW-103A-12	Detection	Semiannual Appendix I	Annual Appendix I		
MW-104A-12	Assessment	Semiannual Appendix II	Annual Appendix II		
MW-107A Delineation		Semiannual Appendix I VOCs, Arsenic, Cobalt	Annual Appendix I VOCs, Arsenic, Cobalt		
MW-108A Delineation		Semiannual Appendix I VOCs, Arsenic, Cobalt	Annual Appendix I VOCs, Arsenic, Cobalt		

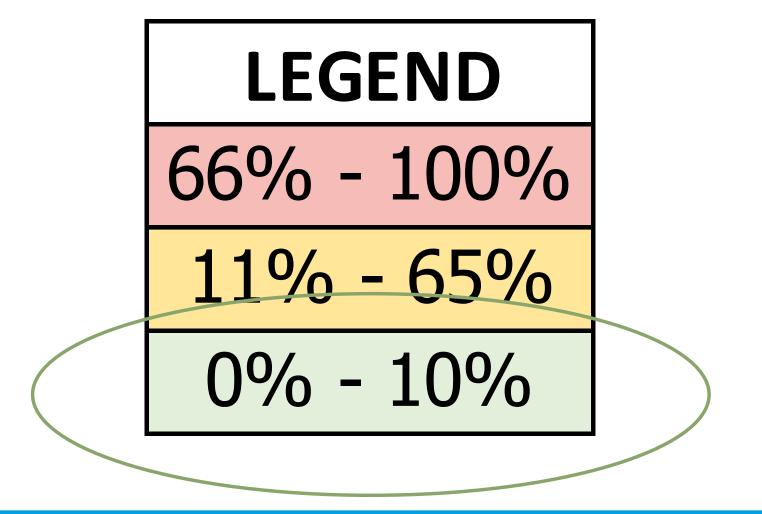
Table 4

(1) Appendix II wells are monitored for the Appendix I and detected Appendix II analytes. In accordance with Permit Special Provision X.5.h, Appendix II wells are resampled for the full Appendix II list every five years.

⁽²⁾ Professional judgment was utilized to recommend an annual optimized frequency for MW-102A-12. If future sampling events indicate elevated bis(2-ethylhexyl)phthalate concentrations, semiannual monitoring will be resumed at MW-102A-12.


Case Study – Initial Statistics Screening

Groundwater Monitoring Network in Minnesota



 Any low hanging fruit?
 e.g., no exceedances and <10% detection?

| Page 17

Foth

Looking at the detection frequency at our entire database

			2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Parameter	Analytical Method	Analyte Type	% Detected										
Barium	EPA 200.7/6010/6010B/6010D	Metal		100%		100%	100%		100%		100%		
Calcium	EPA 200.7/6010/6010B/6010D	Metal	100%	100%		100%	100%		100%		100%		
Magnesium	EPA 200.7/6010/6010B/6010D	Metal	100%	100%		100%	100%		100%		100%		
Potassium	EPA 200.7/6010/6010B/6010D	Metal	100%	100%		100%	100%		100%		100%		
Sodium	EPA 200.7/6010/6010B/6010D	Metal	100%	100%		100%	100%		100%		100%	100%	
Sulfate	EPA 300/ASTM D516-90,02	Metal	100%	97%	94%	94%	100%		100%		94%		
Nickel	EPA 200.7/200.8/6010/6020/6020B	Metal				0%			67%				
Manganese	EPA 200.7/6010/6010B/6010D	Metal	84%	83%									
Iron	EPA 200.7/6010/6010B/6010D	Metal	56%	10%	26%	22%	81%	74%	80%	91%			
Copper	EPA 200.7/200.8/6010/6020/6020B	Metal	28%	80%	26%	6%	59%		60%	32%	50%		
Phosphorus	EPA 365.1	Metal				33%	83%		50%	38%	29%	29%	
Arsenic	EPA 200.8/6010/6020/2340B	Metal	31%	23%	26%	22%	53%	68%	57%	47%	61%	49%	34%
Mercury	EPA 245.1/245.7/7470	Metal	0%	0%	0%	0%	17%	5%	0%	32%	4%	8%	8%
Zinc	EPA 200.7/200.8/6010/6020/6020B	Metal	22%	20%	38%	20%	93%	14%	4%	9%	3%	3%	3%
Boron	EPA 200.7/6010/6010B/6010D	Metal	6%	3%	0%	0%	0%	0%	0%	0%	7%	0%	0%
Cadmium	EPA 200.8/6010/6020/6020B	Metal	13%	3%	0%	0%	9%	5%	0%	0%	8%	0%	0%
Chromium	EPA 200.7/6010/6010B/6010D	Metal	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Cobalt	EPA 200.7/6010/6010B/6010D	Metal	6%	7%	33%	0%	0%	0%	0%	0%	0%	0%	0%
Lead	EPA 200.8/6020/6020B	Metal	3%	0%	4%		9%	0%					
Selenium	EPA 200.8/6010/6020/6020B	Metal				0%	17%						
Silver	EPA 200.8/6010/6010B/6010D	Metal				0%	0%	0%			0%	0%	
Hexachlorobutadiene	EPA 8260/8260B	SVOC	0%	0%			0%						
Naphthalene	EPA 8260/8260B	SVOC	0%	0%			0%	0%			0%	0%	0%
Ethyl Ether	EPA 8260/8260B	VOC	4%	2%			17%		37%		26%	24%	
Vinyl Chloride	EPA 8260/8260B	VOC	0%	0%					15%				
Toluene	EPA 8260/8260B	VOC	0%	0%							8%		
4-Methyl-2-pentanone	EPA 8260/8260B	VOC	0%	0%			0%						
cis-1,2-Dichloroethene	EPA 8260/8260B	VOC	11%	2%			2%						
Trichloroethene	EPA 8260/8260B	VOC	0%	0%									
1,1,1,2-Tetrachloroethane		VOC	0%	0%									
1,1,1-Trichloroethane	EPA 8260/8260B	VOC	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Exceedance Report: Frequency Count

	22Q2		22	22Q3		Q4
	IL	HRL	IL	HRL	IL	HRL
Arsenic					5	5
Manganese	2	2	2	2	20	20
Nitrogen, NO3 + NO2	1	1	1	1	4	4
Perfluorobutanesulfonic acid					2	2
Perfluorohexanoic acid (PFHxA)					2	2
Trichloroethene					1	1
Vinyl Chloride	1	1	1	1	2	2

IL is the Invervention limit and HRL is the Health Risk Limit.

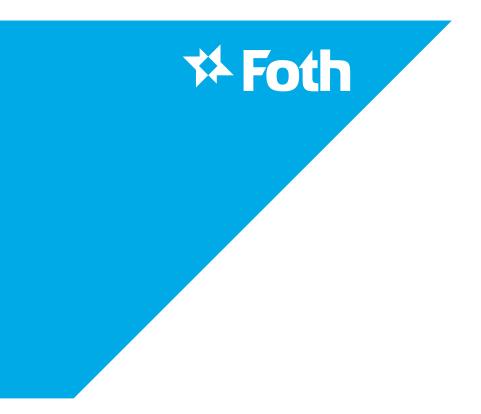
Year	Detection Frequency
2012	0.2635%
2013	0.0845%
2014	0.1126%
2015	0.000%
2016	0.5578%
2017	1.3311%
2018	0.8442%
2019	1.4706%
2020	0.8197%
2021	0.6239%
2022	0.4751%

- VOCs analyzed by EPA 8260
- Evaluating the entire dataset in our database there is no year with detection frequencies greater than 10%.

Evaluating Metals by Method

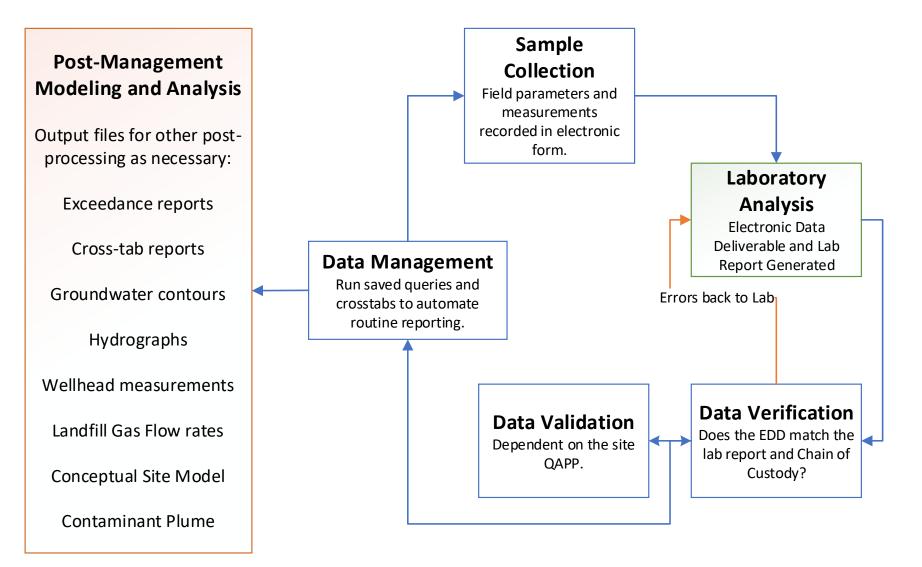
	Detection Frequency							
	ASTM D516	EPA 245.7	EPA 6010/6010D	EPA 6020B				
2018	100%	0%	66%	34%				
2019	97%	32%	70%	26%				
2020	94%	4%	68%	35%				
2021	94%	8%	68%	30%				
2022	94%	8%	66%	27%				

• Method 245.7 is for Mercury



Retained for further Spatial and Temporal

	Current	
Analyte or Group	Frequency	Location (s)
VOC (run for VC and TCE)	annual Q4	MW-13A, MW-14A, MW-16A, MW-16B, MW-18A
VOC (run for VC and TCE)	annual Q2	MW-25A
VOC (run for VC and TCE)	semi-annual	MW-20A, MW-22A, MW-28AR, MW-3A, MW-3C, MW-8A, MW-8B
VOC (run for VC and TCE)	quarterly	MW-27A, MW-29A, MW-30A, MW-30B, MW-31A, MW-31B, MW-32A, MW-32B, MW-4C, MW-5A
Metals: Mercury Method 245.7	annual	MW-13A, MW-14A, MW-16A, MW-16B, MW-18A, MW-20A, MW-22A, MW-28AR, MW-30A, MW-30B, MW-31A, MW-31B, MW-32A, MW-32B, MW-3A, MW-3C, MW-4A, MW-4B, MW-4C, MW-5A, MW-6A, MW-8B, OBS-1, OBS-2
Metals	Annual	MW-25A



Now what?

Data management is a circular process.

l Page 25 **Foth**

Mining our database can save costs.

Post-Management Modeling and Analysis

Output files for other post-processing as necessary:

Exceedance reports

Cross-tab reports

Groundwater contours

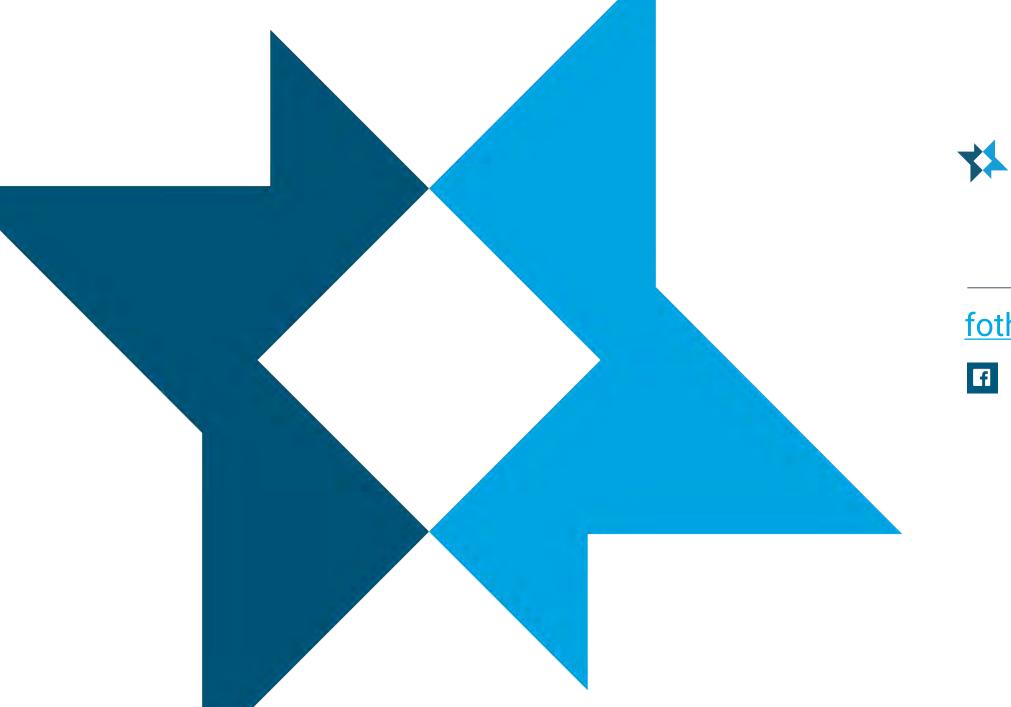
Hydrographs

Wellhead measurements

Landfill Gas Flow rates

Conceptual Site Model

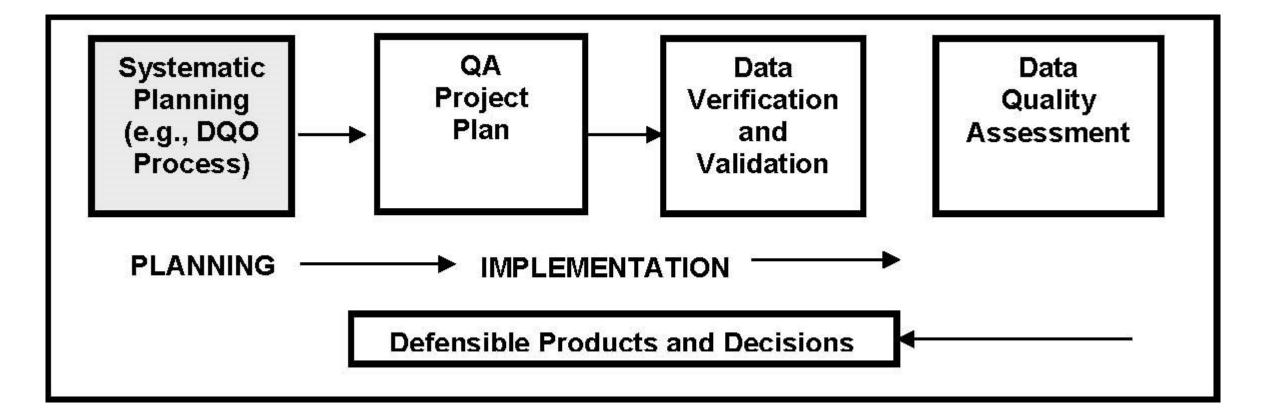
Contaminant Plume


- Communicating the data and site clearly to all regulatory staff and owners is essential for monitoring the impacts to environmental and human health.
 - Evaluate the redundancy and sufficiency of the groundwater monitoring network on your site
 - Describe the site Conceptual Site Model
 - Perform Plume Stability Calculations
 - Create Macros or code to format your database outputs specific to how you want it.

Questions & Answers

foth.com I
✓ in □ □

References


- United States Environmental Protection Agency (USEPA), 2005. Road Map to Long Term Monitoring Optimization. EPA 542-R-05-003, EPA/National Service Center for Environmental Publications, Cincinnati, OH. <u>https://clu-in.org/download/char/542-r-05-003.pdf</u>
- USEPA, 2012. National Strategy to Expand Superfund Optimization Practices from Site Assessment to Site Completion. OSWER Directive 9200.3-75. Office of Solid Waste and Emergency Response and Office of Superfund Remediation and Technology Innovation, Washington, D.C. <u>https://cluin.org/download/REMED/hyopt/Final-National-Strategy.pdf</u>
- USEPA clu-in website: <u>https://clu-in.org/Optimization/index.cfm</u>
- Interstate Technology & Regulatory Council (ITRC), 2016. "Geospatial Analysis for Optimization at Environmental Sites." Interstate Technology & Regulatory Council. <u>https://gro-1.itrcweb.org/</u>.

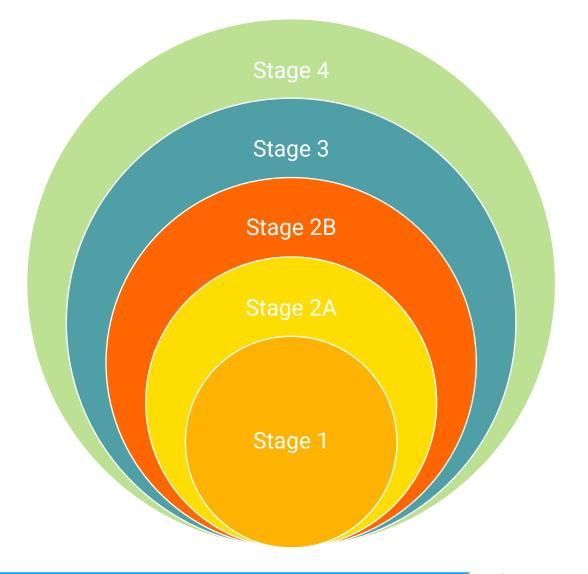
Data Verification & Validation

*****Foth

I Page 31 **Foth**

Data Verification

Completeness check to confirm that the specified analytical requirements have been met.


n Inhastructure & Environment TVC			
Data Verification Checklist			
	T I	1	1 Not
Data Verification Criteria	Ves-	No	Applicable
CHAIN OF CUSTODY (COC)			
CRAIN OF COSTODY (COC)	1.11	E III	1 11
 Are relinquish and receipt signatures present on the DDCO 	110.00	1.00	
Do the analyte and enalytical methods requested on the COC agree with the project requirements (e.g. QAPP, SAP)?			. <u>B</u>
SAMPLE PRESERVATION & HOLDING TIMES			
Samples received by the project laboratory, intact, with correct	8	8	8
preservation and at the correct temperature (less than or equal to a) 6			10.000
degrees Celsius (*C) but not frozen)? Comments:		1.1	
 Samples extracted and analyzed within the holding time limits set by the 	D D	D D	10
respective analytical method(s)?	1	1.1	
Comments:			
ANALYTICAL METHOD REQUIREMENTS			
Method blanks analyzed at the required fracuancies?			
E. Target compounds detected in the method blanks?	B		
Compounds detected: 7. Method duplicate samples performed at the required frequency?			
 Method cupilcate samples performed at the required frequency? Comments: 	-	-	
 Were LCS/LCSD analyses performed at the required frequency? 	8	0	8
Continients:	1.00	-2	100 I
9. Are the percent recoveries and RPDs for the LCS/LCSD within acceptance		- 12	
omits? Comments.	11.2	1.1	
10. Were MS/MSD analyses performed at the required frequency?	E	E.	
11. Are percent recoveries and RPDs for the MS/MSD within acceptable			
limits?		2	
Comments;	11.000	-	10.000
QUALITY ASSURANCE REQUIREMENTS			
 Were the appropriate number of trip blanks collected? Comments. 			
 Were the appropriate number of field blanks collected? Comments: 		E	Π
14. Were the appropriate number of duplicates collected?			
Comments:	-		
 Were the appropriate number of equipment blanks collected? Comments: 	8	B	8
16. Were the appropriate number of mercury field blanks collected?	8		8
Opriments:	1 mar 1	\sim	1.5
QUALITY CONTROL REQUIREMENTS			
17. Is the charge balance error less than 10% or 1 milliequivalents per liter			
(mpg/L), whichever is greater?	16-	100	

Data Validation

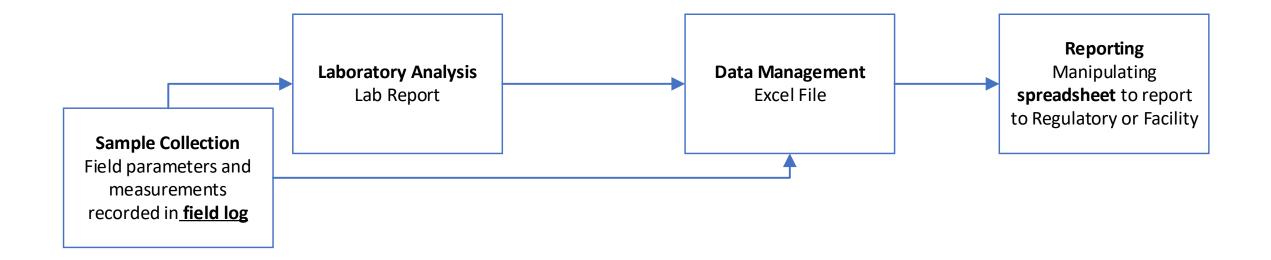
Confirmation that the particular requirements for a specific intended use are fulfilled.

Data validation consists of analyte and sample specific process for evaluating compliance of the laboratory data received with methods, procedures, or contract requirements.

l Page 33 **Foth**

Eliminated through this Screening

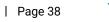
Location	Parameter	Sampling Frequency	Reason for retaining at current schedule
MW-8A	Mercury	Annual	Detected Annually
MW-26A	VOC	quaterly	Detected 22Q3
MW-27B	VOC	annual Q4	Detected 22Q4
MW-29A	VOC	quaterly	Detected 22Q3
MW-4B	VOC	quaterly	Detected 21Q4, 21Q3, 21Q2, and more
MW-4C	VOC	quaterly	Detected 22Q4, 22Q3, 22Q2, and more
MW-6A	VOC	quaterly	Detected 22Q4
OBS-2	VOC	quarterly	Detected 22Q4, 22Q3, 22Q2, and more
OBS-1	VOC	annual, Q4	Detected 22Q4, 21Q4
All	Barium		Detected 100% in 2022
All	Calcium		Detected 100% in 2022
All	Magnesium		Detected 100% in 2022
All	Potassium		Detected 100% in 2022
All	Sodium		Detected 100% in 2022
All	Sulfate		Detected 94% in 2022
All	Nickel		Detected 85% in 2022
All	Manganese		Detected 77% in 2022
All	Iron		Detected 74% in 2022
All	Copper		Detected 48% in 2022
All	Phosphorus		Detected 42% in 2022
All	Arsenic		Detected 34% in 2022
Spray Field WMS (MW-26A, MW-27A, MW-29A, MW-25A)	PFAS	annual, Q4	Retained at current frequency due to Spray Field requirements
Spray Field WMS (MW-26A, MW-27A, MW-29A)	Metals	quarterly	Retained at current frequency due to Spray Field requirements


Support Slides

Compliance Hiccups with Historic Method

- Delay in reporting to agencies
- Lack of ease to transform data and model
- Issues with verification or validation of data
- Calculations
- Modeling long term data

Historic Method of Monitoring and Reporting

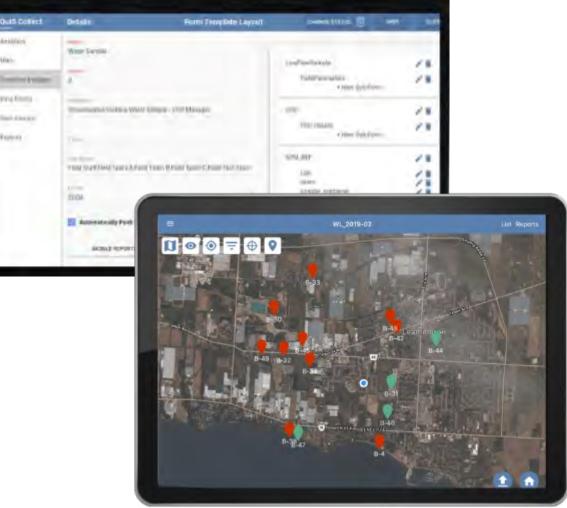


Efficient and clear reporting is essential to communicate to Regulatory Officials and Facility.

It Begins in the Field

Field Data Collection

Planning


- Generate forms for mobile devices
- Match forms to COC and permit or operational requirements

Deployment

- Use tools to track which locations have monitoring completed
- Enter information into forms

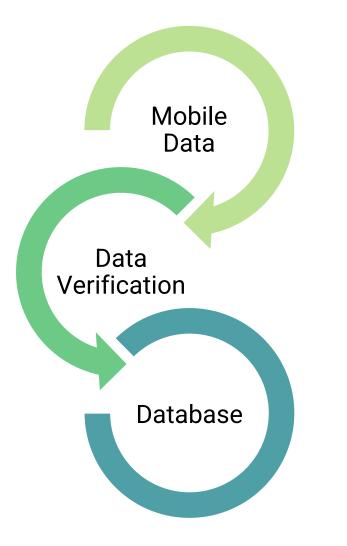
Database Merge

Seamlessly upload EDD into database.

An Million

Fryd Emma

Start diam'r.


Reports.

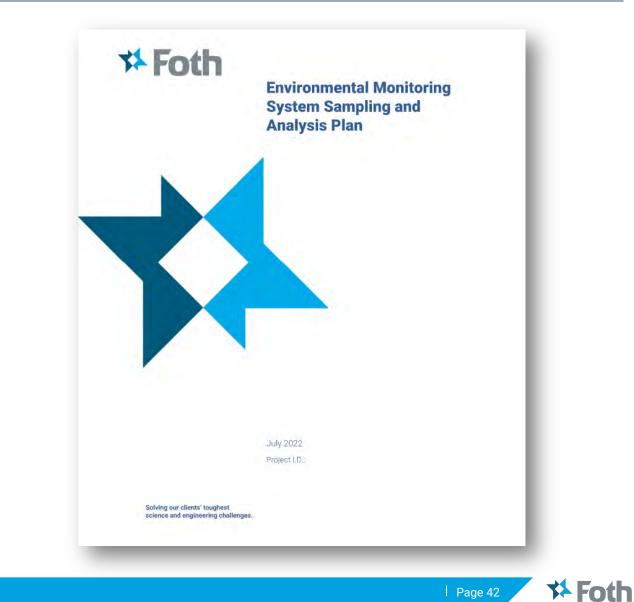
bla's

Source: https://earthsoft.com/products-equis-data-acquisition-equis-collect/

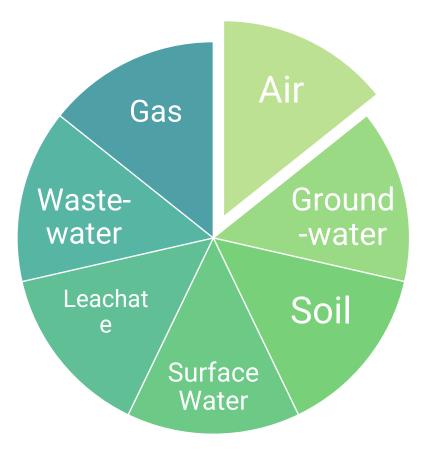
Benefits of using a Collect System

- Team can track progress virtually.
- Seamless upload into database provides team ease of communication between the Project Manager and Field Team.
- Forms can be changed for site specific needs:
 - Soil Sampling
 - Landfill Monitoring (gas and groundwater systems)
- Reduces time to upload information
- Improves accuracy

Gas Compliance Monitoring

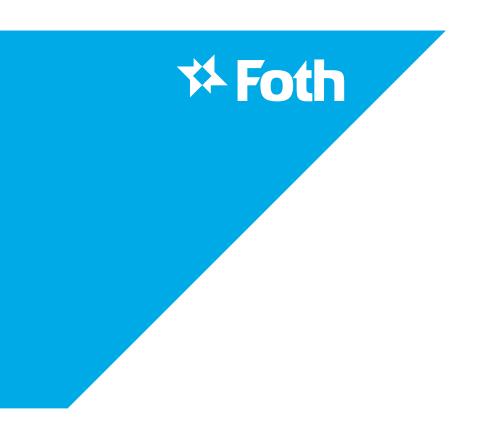

	В	С	D	E	F	G	Н
1		Landfill Gas Da	ata and Ex	ceedance l	Report - La	st 3 Months	5
2	Title V Exceedanc	e Parameters (RED): O2>:	=5%, Temp>=131	LF, Static Press.>=0	"H ₂ O		
3			Parameter 🖵				
4			Methane, %	Oxygen, % of Dissolved	Temperature	- Well Pressure	Well Pressure (Header)
5	Well ID	Sample Date	percent	percent	deg f	inches H2O	inches H2O
6			•				
7	■PSW-21						
8	PSW-21	1/19/2018	60.9	0.4	32	-1.3	-14.49
9	PSW-21	2/26/2018	61.3	0.8	134	-1.2	-12.22
10	PSW-21	3/22/2018	62.1	0.6	36	-1.3	-13.94
11							
12	■PSW-11						
13	PSW-11	1/19/2018	26.3	2.9	18	-0.9	-13.98
14	PSW-11	2/26/2018	25.3	3.2	52	1	-12.15
15	PSW-11	3/22/2018	26.3	3.5	12	-0.5	-13.48
16							
17	■PSW-5						
18	PSW-5	1/19/2018	64.7	0.6	58	-13.9	-14.21
19	PSW-5	2/26/2018	65.3	0.8	68	-12.7	-12.61
20	PSW-5	3/22/2018	65.8	0.5	56	-13.4	-14.07
21							
22	■PSW-4						
23	PSW-4	1/19/2018	58.4	0.4	44	-13.9	-14.12
24	PSW-4	2/26/2018	59.4	0.6	56	-12.1	-12.02
25	PSW-4	3/22/2018	60.2	0.3	44	-13.4	-13.62

Report Rules: 02>=5%, Temp>=131F, Static Press.>=0"H20



Start with your Sampling and Analysis Plan

Use the Sampling Plan as a framework for your database.



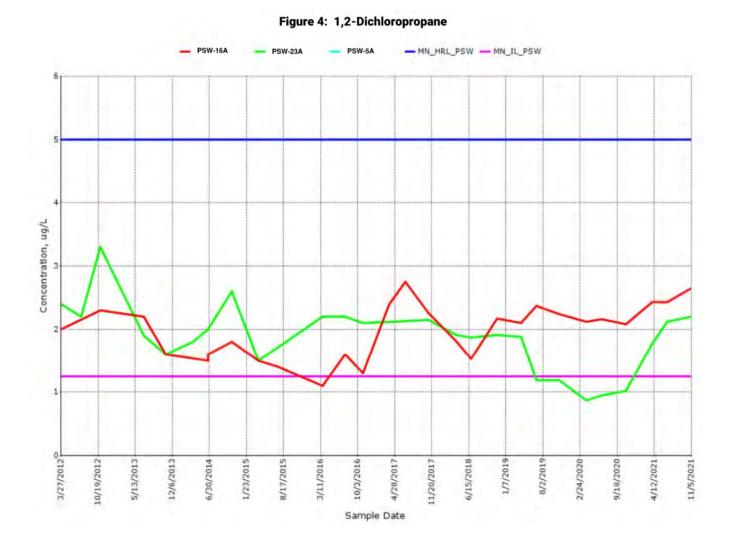
What monitoring domains are within your permit?

I Page 43

Other Uses

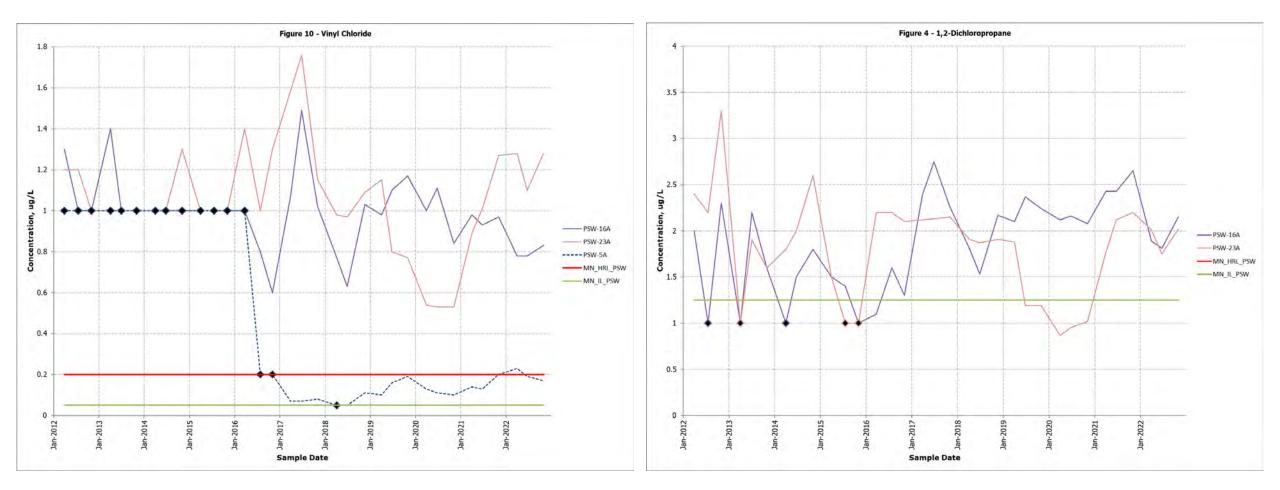
"Evaluate the effect the facility is having on ground water and surface water quality"

		Param eter:	1,2-Dichloropropane	1,4-Dichlorobenzene	Arsenic	Benzene	Cadmium *	cis-1,2-Dichloroethene	Manganese*	Nitrogen, NO3 + NO2	Tri chl oroethene	Vinyl Chloride
		Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		MDH Standard (HRL):	5	10	0.5	2	0.1	6	100	10000	0.4	0.2
Sample	Date	MPCA Standard (IL):	1.25	2.5	2.5	0.5	0.125	1.5	25	2500	0.1	0.05
Location	Sampled	MPCA Standard (SWIL):	NA	NS		4487	NA	NA	4600	10000	6988	NA
PSW-14	4/1/2019	GWM	-	-	-	-	-	-	-	-	3.68	-
PSW-16	4/1/2019	GWM	2.10	-	-	1.93	-	30.39	-	-	1.60	0.98
PSW-20	4/1/2019	GWM	-	-	-	-	-	2.26	-	-	0.95	-
PSW-22	4/1/2019	GWM	-	8.53	-	-	-	6.47	-	-	0.84	0.26
PSW-23	4/1/2019	GWM	1.88	-	-	2.00	-	38.56	-	-	7.81	1.15
PSW-24	4/1/2019	SWM	-	-	-	-	0.19	-	287.0	-	-	-
PSW-25	4/1/2019	SWM	-	-	4.59	-	-	-	-	4620.0	-	-
PSW-5	4/1/2019	GWM	-	-	-	-	-	-	-	-	0.71	0.10
PSW-7	4/1/2019	SWM	-	-	-	-	-	-	-	-	-	0.16


"Tabulate the analytical results **to date** and **highlight** those that exceeded the ground water performance standards of Minn. R. 7035.2815 subpart 4 or surface water quality standards"

A	В	С	D	E	F	G	Н	I	J	K	. L
				SYS_LOC_CODE	PSW-1A	PSW-1A	PSW-1A	PSW-1A	PSW-1A	PSW-1A	PSW-1A
				SAMPLEDATE	27 Mar 2017	26 Jun 2017	01 Nov 2017	05 Apr 2018	27 Jun 2018	19 Nov 2018	01 Apr 201
METHOD_ANALYT	the cost of the second	REPORT_RESULT_	1. 2010		and the second second		1.2.1.2.1.2.1.1.1.1.1	A second second	10° 1 *****	A state of the sta	1 State of the state
E_GROUP	CHEMICAL_NAME	UNIT	MN_HRL	MN_IL	nu.	in.			101	im	m
	Alkalinity as CaCO3	mg/L				519	1		463		
MN_PSW_Inorganic	and the second sec	me/L	• · · · · · · · · · · · · · · · · · · ·	• >	(C	12.10	() · · · · · · · · · · · ·		10.70	>	(1)
MN_PSW_Inorganic		me/L				12.95		1	11.49		
	Cation-Anion Balance	percent				3.4	1		3.6		(1):
MN_PSW_Inorganic	e Chloride	mg/L				< 3.0			4.5		
MN_PSW_Inorganic	Nitrogen, Ammonia	mg/L	And and a second second second			< 0.050	1		< 0.050		() · · · · · · · · · · · · · · · · · · ·
MN_PSW_Inorganic	s Nitrogen, NO3 + NO	ug/L	10000	2500		< 50.0			70.0		
MN_PSW_Inorganic	s Sulfate	mg/L	10			78.6	1		63.0		1 A
MN_PSW_Inorganic	Total Dissolved Solid	mg/L	A			642	· · · · · · · · · · · · · · · · · · ·		553		
MN_PSW_Inorganic	Total Suspended Sol	mg/L	1	-		< 2.0	() · · · · · · · · · · · · · · · · · ·		2		
MN_PSW_Metals	Arsenic	ug/L	10	2.5		0.59			< 0.50		
MN_PSW_Metals	Cadmium	ug/L	0.5	0.125		< 0.10	1		< 0.10		17
MN_PSW_Metals	Calcium	mg/L				156.0			134.0		
MN_PSW_Metals	Chromium	ug/L	100	25		< 10.00	() · · · · · · · · · · · · · · · · · ·		< 10.00	D — 100 1	1.1.1
MN_PSW_Metals	Copper	ug/L	1000	250		< 0.50			< 0.50		
MN_PSW_Metals	Iron	ug/L	11 m	1.7.		2070			1410		
MN_PSW_Metals	Lead	ug/L	15	3.75		< 0.50		-	< 0.50		
MN_PSW_Metals	Magnesium	ug/L		4 J		51100	12		47300		
MN_PSW_Metals	Manganese	ug/L	100	25		117.0			115.0		
MN_PSW_Metals	Mercury	ug/L	2	0.5		< 0.0050			< 0.0050	1	() - · · · · · · · · · · · · · · · · · ·
MN_PSW_Metals	Potassium	ug/L	1			3430			3240		
MN_PSW_Metals	Sodium	ug/L	1			17300	()		17200	D	
MN_PSW_Metals	Zinc	ug/L	2000	500		< 10.00			< 10.00		
MN_PSW_Organics	1,1-Dichloroethane	ug/L	100	25		0.59	1 h + 10	1	()		() ()
MN_PSW_Organics	Dichlorodifluoromet	ug/L	500	125	0.66	0.70				1.2	1.
MN_PSW_Organics	Dichlorofluorometha	ug/L	1999 - Contraction - Contracti		1.08	1.29	1.00	200	()	0.52	0.68
MN_PSW_Organics	Tetrachloroethene	ug/L	5	1.25	3.28	3.90	1.60	1.73	2.25	1.68	0.75
MN_PSW_Organics		ug/L	0.4	0.1	2.65	3.46	0.94	1.04	1.41	2.20	3.68
MN PSW Organics	Vinyl Chloride	ug/L	0.2	0.05	0.050						

Bolded values exceed the MPCA IL. Highlighted values exceed the MPCA IL and MDH HRL.



"Identify recent and long-term trends in the concentrations of monitored constituents and in water elevations"

Page 47 Foth

Format Automation in Excel using Macro

Calculate Chemical Loading on Land Application Site

Table 9 Spray Application of Landfill Leachate Chemical Loading Summary in 2022 May 2022 - October 2022

	Mean Treatment Ponds Concentration (µg/L) ¹												
Year	Arsenic	Boron	Cadmium	Copper	Lead	Mercury	Nickel	NH3*	PAN*	Selenium	SAR	Zinc	(ft ³)
2012	42.50	10078.33	0.65	19.64	2.24	0.01	93.30	32.78	113.94	12.33	12.04	50.17	212,847.6
2013	21.93	5657.17	0.34	14.90	1.85	0.01	50.91	61.65	48.32	5.08	8.55	43.00	294,264.7
2014	12.05	4830.00	0.29	22.45	0.91	0.01	53.30	30.40	37.73	3.94	6.99	35.50	157,018.7
2015	35.55	7115.00	0.68	4.48	0.50	0.01	78.40	69.25	116.23	1.40	11.68	22.00	119,358.3
2016	28.60	5360.00	0.11	7.71	1.06	0.01	59.45	82.25	122.10	1.26	8.42	36.50	60,962.6
2017	28.65	5360.00	0.12	4.68	0.50	0.01	61.50	72.50	86.05	3.97	9.65	20.50	150,160.4
2018	30.90	5005.00	0.16	3.78	0.58	0.01	50.25	115.50	88.23	2.03	9.16	22.50	59,037.4
2019	43.32	8538.33	0.10	2.06	0.50	0.01	75.58	219.50	129.79	2.35	13.10	38.67	65,454.5
2020	36.32	7430.00	0.10	2.45	0.61	0.01	73.25	143.53	111.60	0.86	11.71	33.50	48,770.1
2021	35.00	8945.00	0.10	4.05	0.84	0.01	94.82	117.55	132.44	2.09	13.30	20.67	306,075.0
2022	58.40	10256.67	0.31	11.67	2.85	0.01	109.65	91.04	217.94	3.23	14.74	62.67	263,101.6

	Annual Mass Loading (lb/acre) ²												
Year	Arsenic	Boron	Cadmium	Copper	Lead	Mercury	Nickel	NH3	NA	Selenium	SAR	Zinc	
1996-2011*	0.36	5.14	2.62E-03	2.43	0.13	4.06E-04	1.02	61.01	99.73	0.05	6.25	1.19	
2012	0.08	19.69	1.3E-03	0.04	0.00	1.3E-05	0.18	64.05	222.49	0.02	12.04	0.10	
2013	0.06	15.28	9.2E-04	0.04	0.00	2.7E-05	0.14	166.55	130.43	0.01	8.55	0.12	
2014	0.02	6.96	4.1E-04	0.03	0.00	1.6E-05	0.08	43.82	54.35	0.01	6.99	0.05	
2015	0.04	7.80	7.5E-04	0.00	0.00	5.5E-06	0.09	75.88	127.27	0.00	11.68	0.02	
2016	0.02	3.00	6.2E-05	0.00	0.00	3.9E-06	0.03	46.03	68.29	0.00	8.42	0.02	
2017	0.04	7.39	1.7E-04	0.01	0.00	6.9E-06	0.08	99.95	118.54	0.01	9.65	0.03	
2018	0.02	2.71	8.4E-05	0.00	0.00	3.8E-06	0.03	62.60	47.79	0.00	9.16	0.01	
2019	0.03	5.13	6.0E-05	0.00	0.00	3.0E-06	0.05	131.90	77.94	0.00	13.10	0.02	
2020	0.02	3.33	4.5E-05	0.00	0.00	2.4E-06	0.03	64.26	49.93	0.00	11.71	0.01	
2021	0.10	25.13	2.8E-04	0.01	0.00	2.8E-05	0.27	330.31	308.06	0.01	13.30	0.06	
2022	0.14	24.77	7.5E-04	0.03	0.01	2.3E-05	0.26	219.91	526.04	0.01	14.74	0.15	
Lifetime	0.92	-	7.41E-03	2.60	0.15	5.39E-04	2.26	-	-	0.12	-	1.79	
Sum													
Lifetime	37 ^a		35 ^a	1339 ^a	268 ^a	15ª	375°			89 ^a		2500°	
Limit	-												
Annual		4ª						50- 200 ^a	75- 300 ^b		8.5 ^a		
Limit													

– = Not Applicable

µg/L = micrograms per liter

ft³ = cubic feet

lb/acre = pounds per acre

NA = Nitrogen Applied, as TKN and N02+N03 as N, according to MPCA guidance (August, 2012)

¹The mean treatment pond concentrations are calculated from samples collected from the east and west ponds three times per year

²The Annual Mass Loading was calculated according to the following equations and constants for metals and nutrients (MPCA, 2011).

For laboratory analytical concentrations less than the reporting limit, the reporting limit was used.

* = Nitrogen Species are reported in milligrams per liter (mg/L) and not micrograms per liter (ug/L).

* = The Maximum Cumulative Loading Limits were referenced from the MPCA Land Treatment of Landfill Leachate (April, 2011) publication.

^b = The Maximum Annual Loading Limits were referenced from the MPCA Nitrogen Management at Land Application of Landfill Leachate Sites (August, 2012) publication.

$$M = load (lbs / acre) = \frac{C = mean (ug / L) * V (ft^3) * (1lb / 453,592,400 ug) * (28.32 L / 1 ft^3)}{A (acre)}$$

NH3 = Ammonia as Nitrogen, according to MPCA guidance (April, 2011)

MPCA = Minnesota Pollution Control Agency PAN = Potentially Available Nitrogen, TKN and NO2+NO3 as N, according to MPCA guidance (August, 2012)

SAR = Sodium Adsorption Ratio

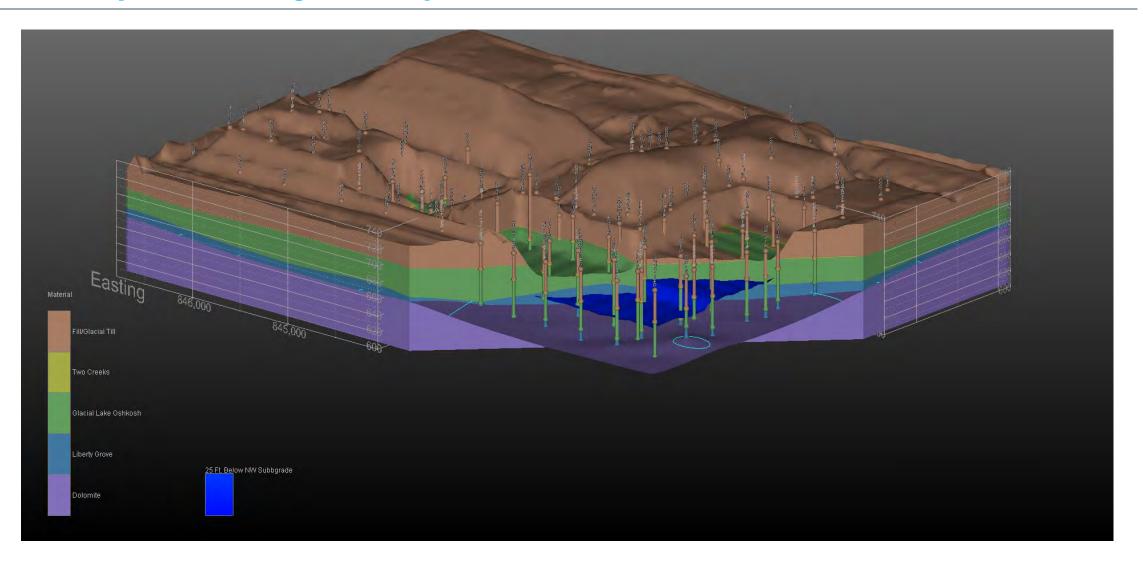
Sodium Adsorption Ra

4.5E+08 micrograms 6.80 acres 28.32 liters 8.34 pounds

Applicable Conversions 1 pound =

One gallon of nitrogen =

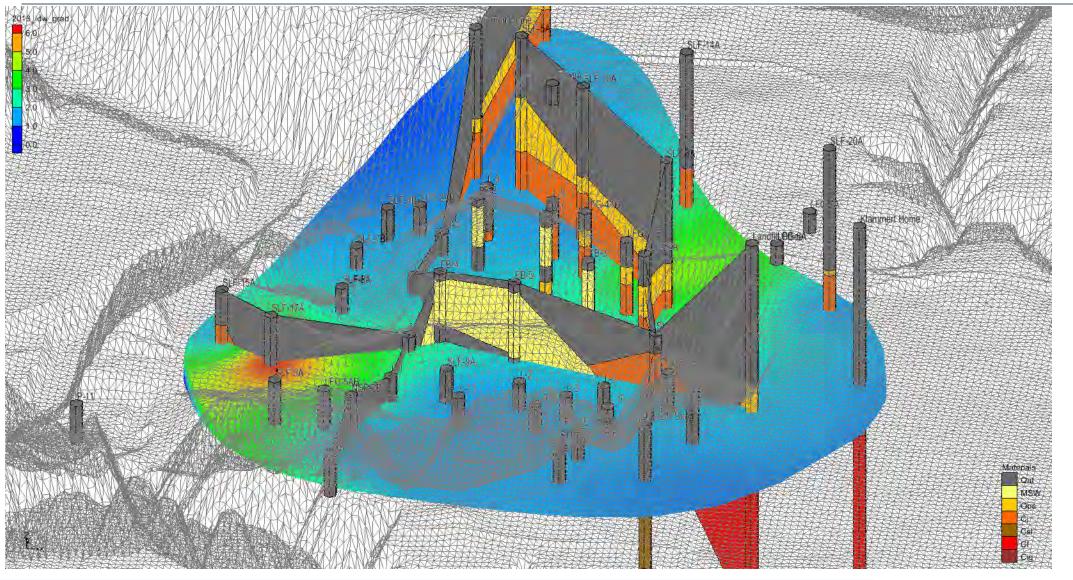
Spray Area =

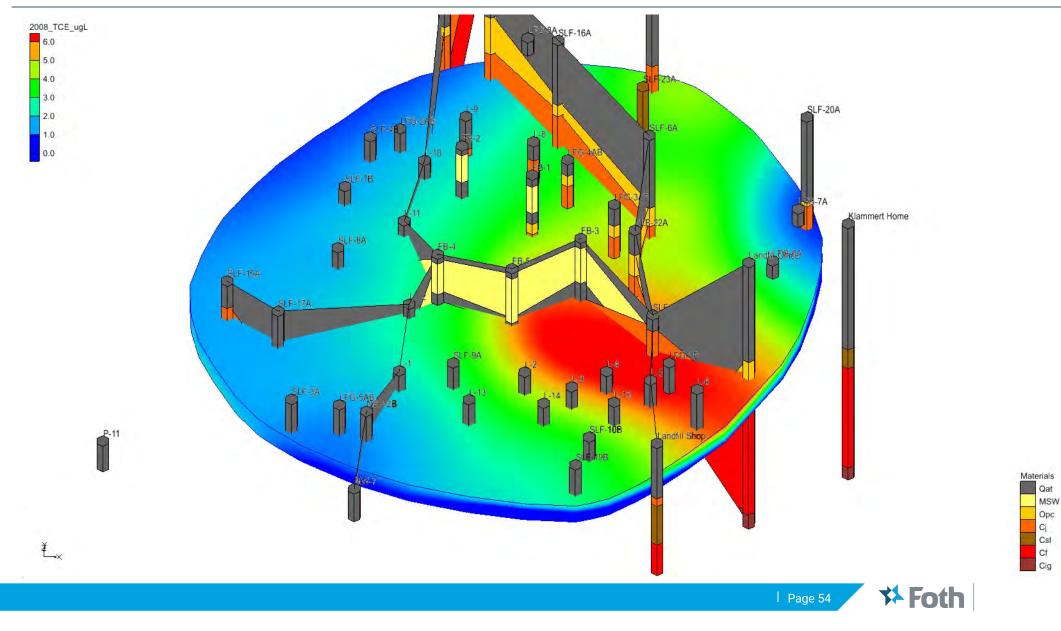

1 cubic foot =

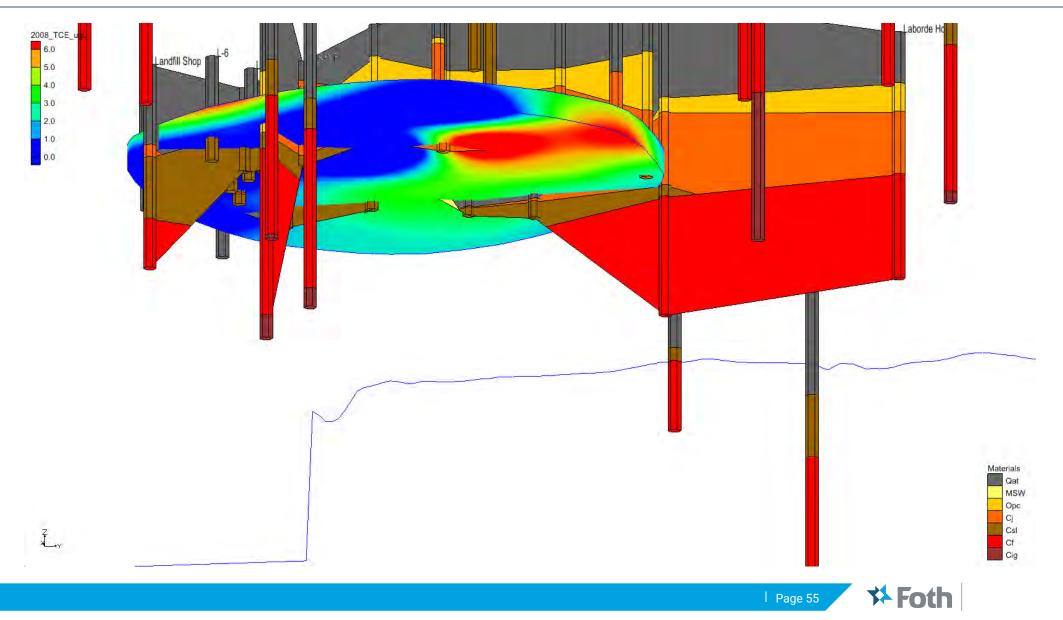
Checked by: BMS2

Our database can easily transform the data to meet the needs of owners and operators.

Conceptual Design Component: Liner and Groundwater Elevation







GW Monitoring Network Review- Sufficiency (spatial output)

Page 56